| 研究生: |
黃柄獻 Huang, Ping-Hsien |
|---|---|
| 論文名稱: |
轉化生長因子傳遞之訊息影響子宮肌瘤細胞聚集 TGF-β Signaling is Involved in Leiomyomal Cell Aggregation in a Long-Term Culture Model |
| 指導教授: |
陳麗玉
Chen, Lih-Yuh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 生理學研究所 Department of Physiology |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 39 |
| 中文關鍵詞: | 子宮肌瘤細胞 、轉化生長因子 、細胞聚集 |
| 外文關鍵詞: | Leiomyomal cell, TGFβ-1, cell-aggregation |
| 相關次數: | 點閱:77 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
子宮肌瘤是好發於生育年齡婦女的良性腫瘤,其為造成婦女接受切除子宮手術之主要病因之一。肌瘤表現大量的細胞外基質及轉化生長因子,轉化生長因子能促進子宮肌瘤細胞的細胞外基質表現以及細胞增生。前人研究發現子宮肌瘤細胞經長時間培養後可形成三維立體的球狀聚集。本研究藉由長時間細胞培養方式來探討乙型轉化生長因子對子宮肌瘤細胞形成球狀聚集之影響。子宮肌瘤細胞取自於進行子宮全切除術病患之肌瘤組織。肌瘤細胞經培養七天或十四天會形成不同程度之細胞聚集。子宮肌瘤細胞聚集程度可分為Type-A、Type-B和Type-C。Type-A為低密度而交錯之多層細胞聚集,Type-B為高密度多層細胞聚集,Type-C為高密度球狀細胞聚集。子宮肌瘤細胞比子宮平滑肌細胞較易形成細胞聚集。我們的實驗結果顯示子宮肌瘤細胞於0.5 %和2 % FBS-DMEM培養下,轉化生長因子皆可以促進細胞聚集。過去文獻指出子宮肌瘤細胞會分泌轉化生長因子,我們因此利用第一型轉化生長因子受體抑制劑(SB431542)來抑制轉化生長因子接受器的磷酸化,進而抑制轉化生長因子所引發之Smad-3活化,SB431542可抑制子宮肌瘤細胞聚集的過程。U0126是一種抑制ERK 磷酸酶的抑制劑,它抑制肌瘤細胞ERK的磷酸化,並且會抑制子宮肌瘤細胞形成聚集的過程。總結,在細胞聚集的過程中,轉化生長因子可以誘導Smad-3的磷酸化進而促進子宮肌瘤細胞的聚集,此外ERK所傳遞的訊息也參與在細胞聚集的過程。
Leiomyoma, a benign tumor derived from myometrium, is the most common gynecological problem to cause hysterectomy. Previous studies have shown that leiomyoma expresses higher levels of TGF-beta and extracellular matrix compared to myometrium. In addition, leiomyomal cells form three dimensional aggregates after long-term culture. This study aimed to investigate the role of TGF-βin leiomyomal cell aggregation in long-term culture. Leiomyomal cells from patients underwent hysterectomy were cultured for 7 or 14 days. Multilayered cell aggregates were classified according to the cell density detected under phase-contrast optics: type A, low-density aggregates; type B, high-density aggregates; type C, high-density spheroids. TGF-β enhanced the aggregation of leiomyomal cells cultured in DMEM containing 0.5% or 2% fetal bovine serum. SB431542, an inhibitor for TGF-βreceptor kinase, inhibited TGF-β-enhanced aggregation in leiomyomal cells. The phosphorylation of smad-3 was stimulated by TGF-βin a time-dependent manner, with peak activation at 1 hr. SB431542 eliminated the TGF-β-induced smad-3 phosphorylation. U0126, an inhibitor for ERK kinase, inhibited ERK phosphorylation and aggregate formation in leiomyomal cells. These results suggested that TGF-β/smad 3and ERK signaling pathways are involved in leiomyomal cell aggregation.
Alam N, Goel HL, Zarif MJ, Butterfield JE, Perkins HM, Sansoucy BG, Sawyer TK, Languino LR. (2007) The integrin-growth factor receptor duet. J Cell Physiol. 213(3):649-53.
Al-Hendy A, Lee EJ, Wang HQ, Copland JA. (2004) Gene therapy of uterine leiomyomas: adenovirus-mediated expression of dominant negativeestrogen receptor inhibits tumor growth in nude mice. Am J Obstet Gynecol. 191(5):1621-31
.
Arici A, Sozen I. (2000) Transforming growth factor-β3 is expressed at high levels in leiomyoma where it stimulates fibronectin expression and cell proliferation. Fertil Steril. 73:1006–11.
Burch ML, Zheng W, Little PJ. (2011) Smad linker region phosphorylation in the regulation of extracellular matrix synthesis. Cell Mol Life Sci. 68(1):97-107.
Chegini N, Tang XM, Ma C. (1999) Regulation of transforming growth factor-beta1 expression by granulocyte macrophage-colony-stimulating factor in leiomyoma and myometrial smooth muscle cells. J Clin Endocrinol Metab. 84(11):4138-43.
Chegini N, Ma C, Tang XM, Williams RS. (2002) Effects of GnRH analogues, 'add-back' steroid therapy, antiestrogen and antiprogestins on leiomyoma and myometrial smooth muscle cell growth and transforming growth factor-beta expression. Mol Hum Reprod. 8(12):1071-8
Cheng MH, Chao HT, Wang PH. (2008) Medical treatment for uterine myomas. Taiwan J Obstet Gynecol. 47(1):18-23.
Ciarmela P, Islam MS, Reis FM, Gray PC, Bloise E, Petraglia F, Vale W, Castellucci M. (2011) Growth factors and myometrium: biological effect in uterine fibroid and possible clinical implications. Hum Reprod Update. 17(6):772-90.
Daly AC, Randall RA, Hill CS. (2008) Transforming growth factor beta-induced Smad1/5 phosphorylation in epithelial cells is mediated by novel receptor complexes and is essential for anchorage-independent growth. Mol Cell Biol. 28(22):6889-902.
Ding L, Xu J, Luo X, Chegini N. (2004) Gonadotropin releasing hormone and transforming growth factor beta activate mitogen-activated protein kinase/extracellularly regulated kinase and differentially regulate fibronectin, type I collagen, and plasminogen activator inhibitor-1 expression in leiomyoma and myometrial smooth muscle cells. J Clin Endocrinol Metab. 89(11):5549-57.
Dou Q, Zhao Y, Tarnuzzer RW, Rong H, Williams RS, Schultz GS, Chegini N. (1996) Suppression of transforming growth factor-beta (TGF beta) and TGF beta receptor messenger ribonucleic acid and protein expression in leiomyomata in women receiving gonadotropin-releasing hormone agonist therapy. J Clin Endocrinol Metab. 81(9):3222-30.
Halder SK, Beauchamp RD, Datta PK. (2005) A specific inhibitor of TGF-beta receptor kinase, SB-431542, as a potent antitumor agent forhuman cancers. Neoplasia. 7(5):509-21.
Hassan MH, Salama SA, Zhang D, Arafa HM, Hamada FM, Fouad H, Walker CC, Al-Hendy A. (2010) Gene therapy targeting leiomyoma: adenovirus-mediated delivery of dominant-negative estrogen receptor gene shrinks uterine tumors in Eker rat model. Fertil Steril. 93(1):239-50.
Hirschhaeuser F, Menne H, Dittfeld C, West J, Mueller-Klieser W, Kunz-Schughart LA. (2010) Multicellular tumor spheroids: an underestimated tool is catching up again. J Biotechnol. 148(1):3-15.
Inman GJ, Nicolás FJ, Callahan JF, Harling JD, Gaster LM, Reith AD, Laping NJ, Hill CS. (2002) SB-431542 is a potent and specific inhibitor of transforming growth factor-beta superfamily type I activin receptor-like kinase (ALK) receptors ALK4, ALK5, and ALK7. Mol Pharmacol. 62(1):65-74.
Javelaud D, Mauviel A. (2005) Crosstalk mechanisms between the mitogen-activated protein kinase pathways and Smad signaling downstream of TGF-beta: implications for carcinogenesis. Oncogene. 24(37):5742-50.
Jeong EK, Lee SY, Jeon HM, Ju MK, Kim CH, Kang HS. (2010) Role of extracellular signal-regulated kinase (ERK)1/2 in muticellular resistance to docetaxel in MCF-7 cells. Int J Oncol. 37(3):655-61.
Joseph DS, Malik M, Nurudeen S, Catherino WH. (2010) Myometrial cells undergo fibrotic transformation under the influence of transforming growth factor beta-3. Fertil Steril. 93(5):1500-8.
Kang JS, Liu C, Derynck R. (2009) New regulatory mechanisms of TGF-beta receptor function. Trends Cell Biol. 19(8):385-94.
Kim SH, Turnbull J, Guimond S. (2011) Extracellular matrix and cell signalling: the dynamic cooperation of integrin, proteoglycan andgrowth factor receptor. J Endocrinol. 209(2):139-51.
Kobayashi Y, Nikaido T, Zhai YL, Iinuma M, Shiozawa T, Shirota M, Fujii S. (1996) In-vitro model of uterine leiomyomas: formation of ball-like aggregates. Hum Reprod. 11(8):1724-30.
Laping NJ, Everitt JI, Frazier KS, Burgert M, Portis MJ, Cadacio C, Gold LI, Walker CL. (2007) Tumor-specific efficacy of transforming growth factor-beta RI inhibition in Eker rats. Clin Cancer Res. 13(10):3087-99.
Laping NJ, Grygielko E, Mathur A, Butter S, Bomberger J, Tweed C, Martin W, Fornwald J, Lehr R, Harling J, Gaster L, Callahan JF, Olson BA. (2002) Inhibition of transforming growth factor (TGF)-beta1-induced extracellular matrix with a novelinhibitor of the TGF-beta type I receptor kinase activity: SB-431542. Mol Pharmacol. 62(1):58-64.
Lee BS, Nowak RA. (2001) Human leiomyoma smooth muscle cells show increased expression of transforming growth factor-beta 3 (TGF beta 3) and altered responses to the antiproliferative effects of TGF beta. J Clin Endocrinol Metab. 86(2):913-20.
Margadant C, Sonnenberg A. (2010) Integrin-TGF-beta crosstalk in fibrosis, cancer and wound healing. EMBO Rep. 11(2):97-105.
Miner JH, Li C, Mudd JL, Go G, Sutherland AE. (2004) Compositional and structural requirements for laminin and basement membranes during mouseembryo implantation and gastrulation. Development. 131(10):2247-56.
Moore AB, Yu L, Swartz CD, Zheng X, Wang L, Castro L, Kissling GE, Walmer DK, Robboy SJ, Dixon D. (2010) Human uterine leiomyoma-derived fibroblasts stimulate uterine leiomyoma cell proliferation and collagen type I production, and activate RTKs and TGF beta receptor signaling in coculture. Cell Commun Signal. 8:10.
Morikawa A, Ohara N, Xu Q, Nakabayashi K, DeManno DA, Chwalisz K, Yoshida S, Maruo T. (2008) Selective progesterone receptor modulator asoprisnil down-regulates collagen synthesis incultured human uterine leiomyoma cells through up-regulating extracellular matrixmetalloproteinase inducer. Hum Reprod. 23(4):944-51.
Murase E, Siegelman ES, Outwater EK, Perez-Jaffe LA, Tureck RW. (1999) Uterine leiomyomas: histopathologic features, MR imaging findings, differential diagnosis, and treatment. Radiographics. 19(5):1179-97.
Nasser Chegini. (2010) Proinflammatory and Profibrotic Mediators: Principal Effectors of Leiomyoma Development as a Fibrotic Disorder. Semin Reprod Med. 28(3):180-203.
Nierth-Simpson EN, Martin MM, Chiang TC, Melnik LI, Rhodes LV, Muir SE, Burow ME, McLachlan JA. (2009) Human uterine smooth muscle and leiomyoma cells differ in their rapid 17beta-estradiol signaling: implications for proliferation. Endocrinology. 150(5):2436-45.
Norian JM, Malik M, Parker CY, Joseph D, Leppert PC, Segars JH, Catherino WH. (2009) Transforming growth factor beta3 regulates the versican variants in the extracellular matrix-rich uterine leiomyomas. Reprod Sci. 16(12):1153-64.
Patel VN, Knox SM, Likar KM, Lathrop CA, Hossain R, Eftekhari S, Whitelock JM, Elkin M, Vlodavsky I, Hoffman MP. (2007) Heparanase cleavage of perlecan heparan sulfate modulates FGF10 activity during ex vivosubmandibular gland branching morphogenesis. Development. 134(23):4177- 86.
Rossi MJ, Chegini N, Masterson BJ. (1992) Presence of epidermal growth factor, platelet-derived growth factor, and their receptors in human myometrial tissue and smooth muscle cells: their action in smooth muscle cells in vitro. Endocrinology. 130(3):1716-27.
Rozario T, DeSimone DW. (2010) The extracellular matrix in development and morphogenesis: a dynamic view. Dev Biol. 341(1):126-40.
Sandberg AA. (2005) Updates on the cytogenetics and molecular genetics of bone and soft tissue tumors: leiomyoma. Cancer Genet Cytogenet. 158 (1):1-26.
Sevilla CA, Dalecki D, Hocking DC. (2010) Extracellular matrix fibronectin stimulate the self-assembly of microtissues on native collagengels. Tissue Eng Part A. 16(12):3805-19.
Smalley KS, Haass NK, Brafford PA, Lioni M, Flaherty KT, Herlyn M. (2006) Multiple signaling pathways must be targeted to overcome drug resistance in cell lines derivedfrom melanoma metastases. Mol Cancer Ther. 5(5):1136-44.
Sozen I, Arici A. (2002) Interactions of cytokines, growth factors, and the extracellular matrix in the cellular biology futerine leiomyomata. Fertil Steril. 78(1):1-12.
Stewart EA, Friedman AJ, Peck K, Nowak RA. (1994) Relative overexpression of collagen type 1 and collagen type 3 messenger ribonucleic acids by uterine leiomyomas during the proliferative phase of the menstrual cycle. J Clin Endocrinol Metab 79:900–6.
Stewart EA. (2001) Uterine fibroids. Lancet. 357(9252):293-8.
Tang XM, Dou Q, Zhao Y, McLean F, Davis J, Chegini N. (1997) The expression of transforming growth factor-beta s and TGF-beta receptor mRNA and protein and the effect of TGF-beta s on human myometrial smooth muscle cells in vitro. Mol Hum Reprod. 3(3):233-40.
Varga J, Pasche B. (2009) Transforming growth factor beta as a therapeutic target in systemic sclerosis. Nat Rev Rheumatol. 5(4):200-6.
Walker CL, Hunter D, Everitt JI. (2003) Uterine leiomyoma in the Eker rat: a unique model for important diseases of women. Genes Chromosomes Cancer. 38(4):349-56.
Walker CL, Stewart EA. (2005) Uterine fibroids: the elephant in the room. Science. 308(5728):1589-92.
Wipff PJ, Hinz B. (2008) Integrins and the activation of latent transforming growth factor beta1 - an intimate relationship. Eur J Cell Biol. 87(8-9):601-15.
Wipff PJ, Rifkin DB, Meister JJ, Hinz B. (2007) Myofibroblast contraction activates latent TGF-beta1 from the extracellular matrix.
J Cell Biol. 179(6):1311-23.
Wolanska M, Sobolewski K, Drozdzewicz M, Bankowski E. (1998) Extracellular matrix components in uterine leiomyoma and their alteration during the tumour growth. Mol Cell Biochem. 189(1-2):145-52.
Worthington JJ, Klementowicz JE, Travis MA. (2011) TGFβ: a sleeping giant awoken by integrins. Trends Biochem Sci. 36(1):47-54.
Yu L, Saile K, Swartz CD, He H, Zheng X, Kissling GE, Di X, Lucas S, Robboy SJ, Dixon D. (2008) Differential expression of receptor tyrosine kinases (RTKs) and IGF-I pathway activation inhuman uterine leiomyomas. Mol Med. 14(5-6):264-75.
Zhao Y, Wen Y, Polan ML, Qiao J, Chen BH. (2007) Increased expression of latent TGF-beta binding protein-1 and fibrillin-1 in human uterine leiomyomata. Mol Hum Reprod. 13(5):343-9.