| 研究生: |
林舒喬 Lin, Shu-Chiao |
|---|---|
| 論文名稱: |
雙層式定期海運業貨櫃流量預測模型之研究 A Bi-level Container Flow Prediction Model for Liner Shipping |
| 指導教授: |
林東盈
Lin, Dung-Ying |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 交通管理科學系 Department of Transportation and Communication Management Science |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 50 |
| 中文關鍵詞: | 貨櫃定期航運 、Stackelberg賽局模型 、雙層規劃模型 、使用者均衡 、MPEC問題 、混合整數非線性規劃問題 |
| 外文關鍵詞: | Container Liner Shipping, Stackelberg Game, Bi-level Programming, MPEC, MINLP, User Equilibrium |
| 相關次數: | 點閱:100 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
臺灣為一四面環海之海島國家,國際貿易對我國尤其重要,其中又以海運運輸為主。但近年來,因全球經濟不景氣影響及其他亞太地區港埠的積極發展,台灣進出口櫃量漸漸降低。本研究以雙層模型及使用者均衡為基礎,將航商與貨主之決策行為分別以上、下層架構,互相約束與影響,並利用變分不等式與不動點定理將其轉變為Mathematical Programming with Equilibrium Constraints (MPEC)問題,再進一步利用拉式鬆弛法將其轉換為混合整數非線性規劃問題進行求解。此模型可用以評估外在環境變化對國際貨櫃航運網路可能造成的影響,使我國之港埠經營者、航商以及貨主可提早擬定因應策略,提升我國在國際航運市場的地位。
As an island economic system, Taiwan is highly dependent on international trade. Among all transportation modes, shipping is the most important way to import and export cargo. Unfortunately, the total number of TEUs transported through the Taiwanese ports gradually declines in recent years because of the global economic depression and development of neighbor ports. To forecast the international cargo flows so that government agencies can make policy decision based on the results, we develop a mixed integer nonlinear programming (MINLP) based on bi-level programming and User equilibrium. In the bi-level model, upper level optimization problem is referred to as the carrier’s problem where the objective is to minimize the costs. The lower level program is referred to as the shippers’ user equilibrium problem. The upper level and lower level programs interact with each other and determine the final container flows. We transform this bi-level programming to a mathematical programming with equilibrium constraints (MPEC) model and then convert the MPEC model to a MINLP problem. The model can help carriers, shippers and port operators to forms strategies against the changeable environment of global maritime market by forecasting the trend.
[1] Agarwal, R., & Ergun, Ö. (2008). Ship scheduling and network design for cargo routing in liner shipping. Transportation Science, 42(2), 175-196
[2] Al-Khayyal, F., & Hwang, S.-J. (2007). Inventory constrained maritime routing and scheduling for multi-commodity liquid bulk, part I: Applications and model. European Journal of Operational Research, 176(1), 106-130
[3] Andersson, H., Hoff, A., Christiansen, M., Hasle, G., & Løkketangen, A. (2010). Industrial aspects and literature survey: Combined inventory management and routing. Computers & Operations Research, 37(9), 1515-1536
[4] Beckmann, M., McGuire, C. B., & Winsten, C. B. (1956). Studies in the Economics of Transportation. Yale University Press.
[5] Bracken, J., & McGill, J. T. (1973). Mathematical programs with optimization problems in the constraints. Operations Research, 21(1), 37-44
[6] Brouwer, L. E. J. (1911). Über abbildung von mannigfaltigkeiten. Mathematische Annalen, 71(1), 97-115
[7] Brown, G. G., Graves, G. W., & Ronen, D. (1987). Scheduling ocean transportation of crude oil. Management Science, 33(3), 335-346
[8] Candler, W., & Norton, R. (1977). Multi-level programming and development policy: The World Bank.
[9] Christiansen, M., Fagerholt, K., Nygreen, B., & Ronen, D. (2013). Ship routing and scheduling in the new millennium. European Journal of Operational Research, 228(3), 467-483
[10] Christiansen, M., Fagerholt, K., & Ronen, D. (2004). Ship routing and scheduling: Status and perspectives. Transportation Science, 38(1), 1-18.
[11] Colson, B., Marcotte, P., & Savard, G. (2005). Bilevel programming: A survey. 4OR: A Quarterly Journal of Operations Research, 3(2), 87-107
[12] Fang, S. C. (1982). Fixed point models for equilibrium problems on transportation networks. Tamkang Journal of Mathematics, 13, 181–191.
[13] Fichera, G. (1963). Sul problema elastostatico di Signorini con ambigue condizioni al contorno, Atti Act. Nazionale Lincei, S VIII, 34.
[14] Gelareh, S., & Meng, Q. (2010). A novel modeling approach for the fleet deployment problem within a short-term planning horizon. Transportation Research Part E: Logistics and Transportation Review, 46(1), 76-89
[15] Hoff, A., Andersson, H., Christiansen, M., Hasle, G., & Løkketangen, A. (2010). Industrial aspects and literature survey: Fleet composition and routing. Computers & Operations Research, 37(12), 2041-2061
[16] Huang, C., & Karimi, I. A. (2006). Scheduling trans-shipment operations in maritime chemical transportation. Industrial & engineering chemistry research, 45(6), 1955-1973
[17] Inc., L. S. (1981). Lingo. Retrieved from http://lindo.com/index.php/products/lingo-and-optimization-modeling
[18] Kim, H.-J., Chang, Y.-T., Kim, K.-T., & Kim, H.-J. (2012). An epsilon-optimal algorithm considering greenhouse gas emissions for the management of a ship’s bunker fuel. Transportation Research Part D: Transport and Environment, 17(2), 97-103
[19] Koenigsberg, E., & Meyers, D. A. (1980). An interacting cyclic queue model of fleet operations. Logistics and Transportation Review, 16(1), 59-71
[20] Larson, R. C. (1988). Transporting sludge to the 106-mile site: An inventory/routing model for fleet sizing and logistics system design. Transportation Science, 22(3), 186-198.
[21] Lin, D.-Y., & Huang, K.-L. (2017). An equilibrium-based network model for international container flows. Maritime Policy & Management, 1-22.
[22] Miller, D. M. (1987). An interactive, computer-aided ship scheduling system. European Journal of Operational Research, 32(3), 363-379
[23] Rana, K., & Vickson, R. G. (1988). A model and solution algorithm for optimal routing of a time-chartered containership. Transportation Science, 22(2), 83-95
[24] Ronen, D. (1982). The effect of oil price on the optimal speed of ships. Journal of the Operational Research Society, 1035-1040.
[25] Ronen, D. (1983). Cargo ships routing and scheduling: Survey of models and problems. European Journal of Operational Research, 12(2), 119-126
[26] Ronen, D. (1993). Ship scheduling: The last decade. European Journal of Operational Research, 71(3), 325-333
[27] Sheffi, Y. (1985). Urban transportation networks. In (pp. 18-22): Prentice-Hall, Englewood Cliffs, NJ.
[28] Sherali, H. D., Soyster, A. L., & Murphy, F. H. (1983). Stackelberg-Nash-Cournot equilibria: characterizations and computations. Operations Research, 31(2), 253-276
[29] Shyshou, A., Gribkovskaia, I., & Barceló, J. (2010). A simulation study of the fleet sizing problem arising in offshore anchor handling operations. European Journal of Operational Research, 203(1), 230-240.
[30] Smith, M. J. (1979). The existence, uniqueness and stability of traffic equilibria. Transportation Research Part B: Methodological, 13(4), 295-304
[31] Tavasszy, L., Minderhoud, M., Perrin, J.-F., & Notteboom, T. (2011). A strategic network choice model for global container flows: specification, estimation and application. Journal of Transport Geography, 19(6), 1163-1172.
[32] Trudeau, P., & Dror, M. (1992). Stochastic inventory routing: Route design with stockouts and route failures. Transportation Science, 26(3), 171-184
[33] Vicente, L. N., & Calamai, P. H. (1994). Bilevel and multilevel programming: A bibliography review. Journal of Global optimization, 5(3), 291-306
[34] Von Stackelberg, H. (1934). Marktform und gleichgewicht: J. springer.
[35] Wardrop, J. G., & Whitehead, J. I. (1952). CORRESPONDENCE. SOME THEORETICAL ASPECTS OF ROAD TRAFFIC RESEARCH. Proceedings of the Institution of Civil Engineers, 1(5), 767-768
[36] 邱明琦. (2002). 定期貨櫃航線網路設計模式之研究. 成功大學交通管理科學系學位論文, 1-131.
[37] 陳春益, Chen, C.-Y., 張永昌, & Chang, Y.-c. (1997). 航商選擇定期貨櫃航線泊靠港之探討. 行政院國家科學委員會研究彙刊: 人文及社會科學 Proceedings of the National Science Council, Republic of China Part C: Humanities and Social Sciences, 7(3).
[38] 盧華安. (2000). 定期航線靠港順序及船期安排之研究. 國立海洋大學,
[39] 盧華安, & 徐育彰. (2001). 定期貨櫃航線選擇與船隊部署之研究. 運輸計劃季刊, 30(3), 577-601.
校內:2024-08-22公開