| 研究生: |
陳麒翰 Chen, Chi-Han |
|---|---|
| 論文名稱: |
考慮晶粒尺寸效應對精微薄板成形之成形極限預測 Forming Limit Prediction of Micro Sheet Metal Forming due to Grain Size Effect |
| 指導教授: |
李榮顯
Lee, Rong-Shean |
| 共同指導教授: |
高振騰
Gau, Jenn-Terng |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 英文 |
| 論文頁數: | 148 |
| 中文關鍵詞: | 精微薄板成形 、晶粒尺寸效應 、成形極限圖 、延性破壞準則 |
| 外文關鍵詞: | micro sheet metal forming, grain size effect, forming limit diagram, ductile fracture criterion |
| 相關次數: | 點閱:146 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於光電、資訊以及3C產品輕薄短小的趨勢,提升精微金屬元件的製造效率與品質是維持競爭優勢的重要手段。精微金屬成形具有大量生產及品質穩定的優點,是精微金屬元件製造中相當具有競爭力的製程。然而精微金屬成形製程由於在塑性變形區的特徵尺寸可能只有數個晶粒,其微觀組織或是晶粒尺寸對於金屬流動以及可成形性的影響變得顯著,使得精微工業無法直接套用巨觀金屬成形的經驗與準則至精微金屬成形製程。因此本論文探討晶粒尺寸效應對於精微成形製程與成形極限之影響此一重要課題。本文在實驗方面,進行不同厚度與晶粒尺寸304不銹鋼與C2600黃銅薄板之拉伸試驗、張伸試驗以及深引伸實驗,探討晶粒尺寸比(T/D ratio)對於機械性質的影響。在試件表面製作微小網格以及隨機斑點後,以自行設計的精微模具組配合萬能試驗機進行張伸試驗以及深引伸實驗並以影像處理方式進行變形後網格以及斑點的局部應變來建立精微薄板成形之成形極限圖。在理論預測方面,以有限元素模擬軟體LS-DYNA進行拉伸試驗模擬並藉由應力以及應變累積獲得延性破壞準則能量常數並藉由異向性降伏準則建立預測的成形曲線。在比對實驗與預測之成形極限後,本文提出修正的延性破壞準則來預測精微薄板成形之成形極限,在考慮應變路徑以及晶粒尺寸比後,所提出的延性破壞模式可以較準確地預測304不銹鋼與C2600黃銅精微薄板之成形極限。
Due to the miniaturization trend of the devices in electronic, medical and 3C industries, the improvements for manufacturing efficiency and product quality are important means to keep competitive. Micro metal forming is the most suitable and cost effective manufacturing process for mass production of micro metal parts because of its high production rate, low material scrap rate, net shape production and superior mechanical properties. However, when the material deforms in the micrometer range, the forming feature may only have few grains. The microstructure becomes more important when miniaturization and exhibits grain size effect which influences material flow and formability in micro metal forming process. The plasticity theory and the know-how of conventional metal forming technology developed under macro scale cannot directly apply to micro metal forming. In this paper, the influence of grain size effect on forming process and formability of micro sheet metal forming was investigated. For the experimental study, a series of micro scale tensile tests, dome height tests and deep drawing experiments were conducted for investigating the grain size effect on mechanical properties and formability of stainless steel 304 and C2600 brass alloy foils. The FLDs of micro sheet metal forming were established by local strain measurements of the micro grids and spots through image measurement and management processes. In forming limit prediction, finite element code LS-DYNA was used to calculate the ductile fracture constants in the ductile fracture criteria and develop predicted forming limit curves. Based on the experimental results, simulation results and Oh’s fracture criterion, two new models were proposed in this paper for predicting the forming limit of stainless steel 304 and C2600 brass alloy foils in micro sheet metal forming. The first proposed model includes the effect of strain path while the second proposed model considers the coupling effect of strain path and thickness to grain size ratio. The first model is superior to the Oh’s criterion on predicting forming limit strain of the foils, but it is not suitable for the foils that are thinner than 100μm. However, the second proposed model can be used for forming limit prediction of the stainless steel 304 and C2600 brass alloy foils with the foil thickness less than 100μm where the grain size effect must be considered.
[1] Geiger, M., Kleiner, M., Eckstein, R., Tiesler, N. and Engel, U., 2001, Microforming, Keynote Paper, Annals of the CIRP, 50(2), 445-462.
[2] A NEXUS MST/MEMS Market Analysis III, 2005-2009, Report edited by the NEXUS Task Force, Market Research: NEXUS Association, available through http://www.enablingmnt.com/html/nexus_market_report.html
[3] Vollertsen, F., Hu, Z., Schulze Niehoff, H. and Theiler, C., 2004, State of the art in micro forming and investigations in micro deep drawing, Journal of Materials Processing Technology, 151, 70-79.
[4] Chen, C. Y., Chen, F, C., 2007, Foresight applications market and development trend on precision micro-forming technology, MIRDC-0453-S602 (96), Kaohsiung: Metal Industries Research & Development Centre, 41-43.
[5] Vollertsen, F., 2001, Metal Forming: Microparts. Encyclopedia of Materials: Science and Technology, Amsterdam: Elsevier, 5424-5427.
[6] Kim, G. Y., Ni, J. and Koc, M., 2007, Modeling of the size effects on the behavior of metals in microscale deformation processes, Journal of Manufacturing Science and Engineering, 129, 470-476.
[7] Engel, E., Eckstein, R., 2002, Microforming - from basic research to its realization, Journal of Materials Processing Technology, 125-126, 35-44.
[8] Maeda, T., 1989, A Proposal of developing of super micro-precision press-machine, The Annual Report of Japan Society for Technology of Plasticity, 11, 12-13.
[9] Vollertsen, F., Biermann, D., Hansen, H. N., Jawahir, I. S., Kuzman, K., 2009, Size effects in manufacturing of metallic components, CIRP Annals - Manufacturing Technology, 58(2), 566-587.
[10]Gau, J., Principe, C., Wang, J., 2007, An experimental study on size effects on flow stress and formability of aluminm and brass for microforming, Journal of Material Processing Technology, 184, 42-46.
[11]Gracio, J. J., Fernandes, J. V. and Schmitt, J. H., 1989, Effect of grain size on substructural evolution and plastic behavior of copper, Material Science and Engineering, A118, 97-105.
[12]Armstrong R. W., 1961, On size effect in polycrystal plasticity. Journal of the Mechanics and Physics of Solids, 9, 196–199.
[13]Messner, A., Engel, U., Kals, R., Vollertsen, F., 1994, Size Effect in the FE-simulation of micro-forming process, Journal of Materials Processing Technology, 45, 371-376.
[14]Geiger, M., Engel, U., Vollersten, F., Kals, R., Messner, A., 1994, Metal forming of microparts for electronics, Production Engineering, 2(1), 15-18.
[15]Geiger, M., Messner, A., Engel, U., 1997, Production of microparts – Size effects in bulk metal forming, similarity theory, Production Engineering, 4(1), 55-58.
[16]Tiesler, N., Engel, U., and Geiger, M., 1999, Forming of microparts - Effects of miniaturization on friction, In Proc. 6th International Conference on Technology of Plasticity (ICTP), 2, 889-894.
[17]Raulea, L. V., Goijaerts, A. M., Govaert, L. E., and Baaijens, F. P. T., 2001, Size effect in the processing of thin metal sheets, Journal of Materials Processing Technology, 115(1), 44-48.
[18]Michel, J. F. and Picart, P., 2003, Size effect on the constitutive behavior for brass in sheet metal forming, Journal of Materials Processing Technology, 141, 439-446.
[19]Kal T. A. and Eckstein R., 2000, Miniaturization in sheet metal working, Journal of Materials Processing Technology, 103, 95-101.
[20]Saotome, Y., Yasuda, K., Kaga, H., 2001, Microdeep drawability of very thin sheet steels, Journal of Materials Processing Technology, 113, 641-647.
[21]Krishnan, N., Cao, J., Dohda, K., 2007, Study of the size effects on friction conditions in microextrusion - Part I: Microextrusion experiments and analysis, Journal of Manufacturing Science and Engineering, 129(4), 669-676.
[22]Cao, J., Krishnan, N., Wang, Z., Lu, H., Liu, W. and Swanson, A., 2004, Microforming: Experimental investigation of the extrusion process for micropins and its numerical simulation using RKEM, Transactions of the ASME, 126, 642-652.
[23]Simons, G., Weippert, C., Dual, J. and Villain, J., 2006, Size effect in tensile testing of thin cold rolled and annealed Cu foils, Materials Science and Engineering: A, 416(1-2), 290-299.
[24]Gau, J., Principe, C., Yu, M., 2007, Springback behavior of brass in micro sheet forming, Journal of Material Processing Technology, 191, 7-10.
[25]Gau, J., Chen, C. H., Yang, Z. Y., 2009, Studying the micro deep drawing process through drawing brass micro cups, Trans. NAMRI/SME, 37, 301-308.
[26]Mahabunphachai, S. and Koç, M., 2008, Fabrication of micro-channel arrays on thin metallic sheet using internal fluid pressure: Investigations on size effects and development of design guidelines, Journal of Power Sources, 175, 363-371.
[27]Mahabunphachai, S. and Koç, M., 2008, Investigation of size effects on material behavior of thin sheet metals using hydraulic bulge testing at micro/meso-scales, Journal of Machine Tools and Manufacture, 48, 1014–1029.
[28]Keeler, S. P., and Backofen, W. A., 1963, Plastic instability and fracture in sheets stretched over rigid punches, Trans. ASM, 56(1), 25-48.
[29]Goodwin, G. M., 1968, Application of strain analysis on sheet metal forming problems in the press shop, SAE paper, No. 680093.
[30]Hiam, J., and Lee, A., 1978, Factors influencing the forming-limit curves of sheet steel, Sheet Metal Industries, 55(5), 631-641.
[31]Swift, H. W., 1952, Plastic instability under plane stress, Journal of the Mechanics and Physics of Solids, 1, 1-18.
[32]Hill, R., 1952, On discontinuous plastic states with special reference of localized necking in thin sheets, Journal of the Mechanics and Physics of Solids, 1, 19-30.
[33]Venter, R., Johnson W. and de Malherbe, M. C., 1971, The limit strains of inhomogeneous sheet metal in biaxial tension, International Journal of Mechanical Sciences, 13, 299-308.
[34]Marciniak, E. and Kuczynski, K., 1967, Limit strains in the processes of stretch forming sheet metal, International Journal of Mechanical Sciences, 9, 609-620.
[35]Hutchinson, J. W., and Neale, K. W., 1978, Sheet necking-II time-independent behavior, Mechanics of Sheet Metal Forming, edited by D.P. Koistinen and N.M. Wang, New York: Plenum Press, 127-150.
[36]Storen, S., and J. R., Rice, 1975, Localized necking in thin sheets, Journal of the Mechanics and Physics of Solids, 23, 421-441.
[37]Freudenthal, A. M., 1950, The inelastic behavior of engineering materials and structures. New York: John Wiley & Sons.
[38]Cockcroft, M. G. and Latham, D. J., 1968, Ductility and workability of metals, Journal of the Institute of Metals, 96, 33-39.
[39]Brozzo, P., De Luka, B., and Rendina, R., 1972, A new method for the prediction of formability in metal sheets, Proc. 7th Biennial Conference on Sheet Metal Forming and Formability. International Deep Drawing Research Group, 9-13.
[40]Norris, D. M., Reaugh, J. E., Moran, B. and Quinones, D. F., 1978, A plastic strain mean-stress criterion for ductile fracture, Journal of Engineering Materials and Technology, Trans. ASME, 100, 279-286.
[41]Atkins, A. G., 1981, Possible explanation for unexpected departures in hydrostatic tension-fracture strain relations, Metal Science, 15, 81- 83.
[42]Oh, S., Chen, C. C. and Kobayashi, S., 1979, Ductile failure in axisymmetric extrusion and drawing, Part 2, Workability in extrusion and drawing, Journal of Engineering for Industry, Trans. ASME, 101, 36-44.
[43]McClintock, F. A., 1968, A criterion of ductile fracture by growth of holes, Journal of Applied Mechanics, Trans. ASME, 35, 363-371.
[44]Rice, J. R. and Tracey, D. M., 1969, On the ductile enlargement of voids in triaxial stress fields, Journal of the Mechanics and Physics of Solids, 17, 201-217.
[45]Oyane, M., 1972, Criteria of ductile fracture strain, Japan Society Mechanical Engineering, 15, 1507-1513.
[46]Kobayashi, S., Oh, S. I. and Altan, T., 1989, Metal forming and the finite element method, New York: Oxford University Press, 47-53.
[47]Minh, H. V., Sowerby, R. and Duncan, J. L., 1975, Probabilistic model of limit strain in sheet metal, International Journal of Mechanical Sciences, 17, 339-349.
[48]Yamaguchi, K., and Mellor, P. B., 1975, Thickness and grain size dependence of limit strains in sheet metal stretching, International Journal of Mechanical Sciences, 18, 85-90.
[49]Yamaguchi, K., Nishimura, S., Takakura N. and Fukuda, M., 1980, Thickness dependence of limit strains in sheet metal forming, In Proc. 4th International Conference on Production Engineering, 155-160.
[50]Kobayashi, M., Kurisaki, Y. and Kawai, N., 1990, Effect of thickness on the pure stretchability of aluminum sheets, Journal of Engineering for Industry, Trans. ASME, 112, 340-345.
[51]Stachowicz, F., 1998, Effect of grain size, thickness and prestrain on the forming limits of 63-37 brass sheets, Metalurgija, 3, 179-182.
[52]Tung, F. C., 2000, Studies on formability for sheet metal forming using photolithography in miniature grids, Thesis, Mechanical Engineering, National Cheng Kung University.
[53]Lin, W. C., 2002, Study on size effect of the grid dimensions in sheet metal forming using photolithography technique, Thesis, Mechanical Engineering, National Cheng Kung University.
[54]Leopold, J., 1999, Foundations of micro-forming, In Proc. 6th International Conference on Technology of Plasticity (ICTP), 2, 883-888.
[55]Hsu, Q. C., 2003, Comparison of different analysis models to measure plastic strains on sheet metal forming parts by digital image process, International Journal of Machine Tools & Manufacture, 43, 515-521.
[56]Chu, T. C., Ranson, W. F. and Sutton, M. A., 1985, Applications of digital image correlation techniques to experimental mechanics, Experimental Mechanics, 25, 232-244.
[57]Kahn-Jetter, Z., Jha, N. K. and Bhatia, H., 1994, Optimal image correlation in experimental mechanics, Optical Engineering, 33, 1099–1105.
[58]Vacher, P., Dumoulin, S., Morestin, F., Mguil-Touchal, S., 1999, Bidimensional strain measurement using digital images, Journal of Mechanical Engineering Science, 213, 811-817.
[59]Kobayashi, S. and Lee, C. H., 1973, Deformation mechanics and workability in upsetting solid circular cylinders, In Proc. North American Metalworking Research Conference (NAMRC), 1, 185.
[60]Lee, D., 1982, Computer-aided control of sheet metal forming process, Journal of Metals, 34, 20-29.
[61]Clift, S. E., Hartley, P., Sturgess, C. E. N. and Rowe, G. W., 1990, Fracture prediction in plastic deformation processes, International Journal of Mechanical Sciences, 32, 1-17.
[62]Yoshida, T., Katayama, T., Usuda, M., 1995, Forming-limit analysis of hemispherical-punch stretching using the three-dimensional finite-element method, Journal of Materials Processing Technology, 50, 266-237.
[63]Takuda, H., Mori, K., Fujimoto, H. and Hatta, N., 1996, Prediction of forming limit in deep drawing of Fe/Al laminated composite sheet using ductile fracture criterion, Journal of Materials Processing Technology, 60, 291-296.
[64]Takuda, H. and Hatta, N., 1998, Numerical analysis of formability of a commercially pure zirconium sheet in some sheet forming processes, Materials Science and Engineering, 242, 15-21.
[65]Takuda, H., Mori, K., Fujimoto, H. and Hatta, N., 1999, Prediction of forming limit in bore-expanding of sheet metals using ductile fracture criterion, Journal of Materials Processing Technology, 92-93, 433-438.
[66]Takuda, H., Mori, K. and Hatta, N., 1999, The application of some criteria for ductile fracture to the prediction of the forming limit of sheet metals, Journal of Materials Processing Technology, 95, 116-121.
[67]Takuda, H., Mori, K., Takakura, N., Yamagushi, K., 2000, Finite element analysis of limit strains in biaxial stretching of sheet metals allowing for ductile fracture, International Journal of Mechanical Sciences, 42, 785-798.
[68]Ozturk, F. and Lee, D., 2004, Analysis of forming limit using ductile fracture criteria, Journal of Materials Processing Technology, 147, 397-404.
[69]Lin, G., Hu, S. J., Cai, W., 2009, Evaluation of formability in bending/hemming of aluminum alloys using plane-strain tensile tests, Journal of Manufacturing Science and Engineering, Trans. ASME, 131(5), 051009, 1-9.
[70]Hill, R., 1948, A theory of the yielding and plastic flow of anisotropic metals, In Proc. the Royal Society A, 193, 281-297.
[71]Woodthorpe, J., Rearce, R., 1970, The anomalous behavior of aluminum sheet under balanced biaxial tension, International Journal of Mechanical Sciences, 12, 341-347.
[72]Hill, R., 1979, Theoretical plasticity of textured aggregates, Mathematical Proceedings of the Cambridge Philosophical Society, 85, 179–191.
[73]Lian, J., Zhou, D., and Baudelet, B., Application of Hill's new yield theory to sheet metal forming—Part I. Hill's 1979 criterion and its application to predicting sheet forming limit, International Journal of Mechanical Sciences, 31(4), 1989, 237-247.
[74]Belytschko, T., Liu, W. K., Moran, B., 1996, Nonlinear finite elements for continua and structures, New York: John Wiley & Sons.
[75] LS-DYNA theory manual, 2006, LSTC, CA. USA.
[76]Hosford, W. F. and Caddell, R. M., 1983, Metal forming mechanics and metallurgy, Englewood Cliffs, N. J.: Prentice-Hall.
[77]ASTM Std. E8, Standard test methods for tension testing of metallic materials, 2004, ASTM International, West Conshohocken, PA, USA.
[78]ASTM Std. E112, Standard test methods for determining average grain size, 2004, ASTM International, West Conshohocken, PA, USA.
[79]Wagoner, R. H., 1980, Measurement and analysis of plane-strain work hardening, Metallurgical Transactions A, 11A, 165-175.
[80]Marciniak, Z., Duncan, J. L. and Hu, S. J., 2002, Mechanics of sheet metal forming, Oxford: Butterworth-Heinemann.
[81]Lee, R. S. and Hsu, Q. C. 1994, Image processing system for circular grid analysis in sheet metal forming, Experimental Mechanics, 43, 108-115.
[82]Hsu, Q. C., 2003, Theoretical and experimental study on the hydroforming of bifurcation tube, Journal of Materials Processing Technology, 142, 367–373.
校內:2012-01-29公開