簡易檢索 / 詳目顯示

研究生: 黃冠綸
Huang, Kuan-Lun
論文名稱: 解讀FXYD2在卵巢透明細胞癌進展和治療中的作用機制
Decipher the mechanism of FXYD2 in OCCC progression and its therapeutic application
指導教授: 洪澤民
Hong, Tse-Ming
學位類別: 碩士
Master
系所名稱: 醫學院 - 臨床醫學研究所
Institute of Clinical Medicine
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 48
中文關鍵詞: 卵巢透明細胞癌FXYD2自噬適體
外文關鍵詞: ovarian clear cell carcinoma, FXYD2, autophagy, aptamer
相關次數: 點閱:131下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 卵巢癌在所有的婦科癌症中擁有最高的死亡率,由於其抗藥性與復發率較高的特性使得卵巢癌一直以來都是必須重視的問題。特別是卵巢透明細胞癌(OCCC)的女性患者其預後能力比起其他種類的卵巢癌的亞型來得更差。我們先前的實驗已經研究過FXYD2可以作為OCCC在預後時的標誌物或治療時的標靶。在阻斷FXYD2的功能時可能會誘導自噬形式的細胞死亡。在本篇研究中,我們研究了FXYD2上調時所調控的機制和OCCC中調控FXYD2的機制,並對FXYD2的特異性適體進行了探討。 我們已經知道IL-6可以調控FXYD2的表達,而HNF1B是FXYD2上游的轉錄因子。為了確定FXYD2在OCCC中的轉錄調控機制,我們預測了FXYD2基因得啟動子區域上轉錄因子的結合位點,並使用特定轉錄因子抑制在OCCC中來研究對FXYD2和HNF1B基因表達的影響。我們發現STAT3的抑制劑S31-201和NF-κB的抑制劑Bay11-7082抑制了OCCC細胞中HNF1B和FXYD2的表達,並通過自噬形式的細胞死亡降低了細胞活性,而AP-1抑制劑SR11302並沒有這種結果。然後我們利用OCCC細胞系中的TOV21G建立可誘導的tet-on shFXYD2系統,並確認在OCCC中FXYD2表現量降低可能導致自噬形式的細胞死亡。最後我們根據實驗室先前研究發現的FXYD2特異性適體APF2-38設計了一種較短的適體(APF2-38s)。通過分析其對OCCC細胞結合的親和力和細胞毒性,我們還探討了APF2-38s在OCCC的早期診斷和治療中的應用。我們發現較短的FXYD2特異性適體APF2-38s與OCCC細胞具有高度的親和力,但是它並不影響OCCC細胞的細胞活力。根據本篇研究OCCC中的STAT3和NF-κB能調控FXYD2及其轉錄因子HNF1B,而通過STAT3、NF-κB或shRNA抑制劑抑制FXYD2的表達將導致OCCC產生自噬形式的細胞死亡,這也使得FXYD2成為OCCC治療的潛在標靶。此外,FXYD2特異性適體可用於開發更有效的早期診斷方式在OCCC患者上。

    Ovarian cancer has the highest morality rate in gynecological cancers and continues to be a significant problem because of the resistant and relapsed disease. Especially, women with ovarian clear cell carcinoma (OCCC) have poorest prognosis than other subtypes in ovarian cancer. We have previously reported that FXYD2 may serve as a prognostic marker and therapeutic target in OCCC. Blocking FXYD2 function may induce autophagic cell death. Here, we studied the regulating mechanisms for FXYD2 upregulation and the FXYD2-regulated mechanisms for OCCC and characterized the FXYD2-specific aptamers. We have known that IL-6 could regulate the expression of FXYD2 and HNF1B is a transcription factor regulating the FXYD2 expression. To identify the transcriptional regulation of FXYD2, we predicted the binding sites of transcription factors on promoter region of FXYD2 gene and studied the effect of the specific transcription factor inhibitors on the expression of FXYD2 and HNF1B in OCCC. We found that the STAT3 inhibitor S31-201 and the NF-κB inhibitor Bay11-7082, but not the AP-1 inhibitor SR11302, suppressed the expression of HNF1B and FXYD2 in OCCC cells as well as decreased cell viability via autophagic cell death. Then we established the inducible tet-on shFXYD2 system in an OCCC cell line, TOV21G, and confirmed that FXYD2 knockdown in OCCC may cause autophagic cell death. Finally, we designed a shorten aptamer (APF2-38s) derived from the FXYD2-specific aptamer APF2-38, found from our lab’s previous work. We characterized APF2-38s for the applications of OCCC diagnosis and therapy by analyzing its cell binding affinity and cytotoxicity for OCCC. We found the shorten FXYD2-specific aptamer APF2-38s with high affinity to OCCC cells. However, it did not affect the cell viability in OCCC cells. According to this study, FXYD2 and its transcription factor HNF1B are regulated in OCCC via STAT3 and NF-κB. Blocking FXYD2 expression by inhibitors of STAT3 and NF-κB or shRNA would cause autophagic cell death in OCCC, making FXYD2 as a potential target for OCCC therapy. Moreover, FXYD2-specific aptamer may be applied to develop a useful early diagnosis for OCCC patients.

    Contents Abstract in Chinese I Abstract II Contents IV Table Contents VI Figure Contents VII Acknowledge VIII Abbreviations X Chapter 1. Introduction 1 I. Ovarian clear cell carcinoma 1 II. Na/K-ATPase 2 III. FXYD2 2 IV. Cardiotonic steroids 3 V. Autophagy 3 VI. Aptamer 4 Chapter 2. Rationale and Specific Aims 5 Chapter 3. Material and Methods 6 1. Human ovarian cancer cell lines 6 2. Cellular RNA isolation 6 3. Quantitative real-time polymerase chain reaction (qRT-PCR) 7 4. Western blot assay 7 5. Antibody 8 6. Gene repression by short hairpin RNA 8 7. Cytotoxicity assay 8 8. Cell-based Affinity Assay 9 9. Statistical analysis 9 Chapter 4. Results 10 I. Prediction of binding sites of transcription factors on the promoter region of FXYD2 gene 10 II. NF-κB and STAT3 regulate the FXYD2 expression 10 III. Blocking the activity of NF-κB or STAT3 suppresses the OCCC cell growth 11 IV. NF-κB or STAT3 inhibitors induce autophagy in OCCC cells 11 V. Treatment with cardiac glycosides combined to NF-κB or STAT3 inhibitors in OCCC cells 12 VI. Suppression of the FXYD2 expression induces autophagy in OCCC cells 12 VII. Establishment of an inducible tet-on shFXYD2 system 13 VIII. Development of the FXYD2-specific aptamers 13 Chapter 5. Discussion 15 Chapter 6. Conclusion 18 Reference 19 Tables 27 Figures 28

    References

    1 Momenimovahed, Z., Tiznobaik, A., Taheri, S. & Salehiniya, H. Ovarian cancer in the world: epidemiology and risk factors. Int J Womens Health 11, 287-299, doi:10.2147/IJWH.S197604 (2019).
    2 Vargas, A. N. Natural history of ovarian cancer. Ecancermedicalscience 8, 465-465, doi:10.3332/ecancer.2014.465 (2014).
    3 del Carmen, M. G., Birrer, M. & Schorge, J. O. Clear cell carcinoma of the ovary: A review of the literature. Gynecologic Oncology 126, 481-490, doi:https://doi.org/10.1016/j.ygyno.2012.04.021 (2012).
    4 Sugiyama, T. et al. Clinical characteristics of clear cell carcinoma of the ovary. Cancer 88, 2584-2589, doi:10.1002/1097-0142(20000601)88:11<2584::AID-CNCR22>3.0.CO;2-5 (2000).
    5 Fujiwara, K., Shintani, D. & Nishikawa, T. Clear-cell carcinoma of the ovary. Annals of Oncology 27, i50-i52, doi:10.1093/annonc/mdw086 (2016).
    6 Oseledchyk, A. et al. Adjuvant chemotherapy in patients with stage I endometrioid or clear cell ovarian cancer in the platinum era: a Surveillance, Epidemiology, and End Results Cohort Study, 2000-2013. Ann Oncol 28, 2985-2993, doi:10.1093/annonc/mdx525 (2017).
    7 Samartzis, E. P., Noske, A., Dedes, K. J., Fink, D. & Imesch, P. ARID1A mutations and PI3K/AKT pathway alterations in endometriosis and endometriosis-associated ovarian carcinomas. International journal of molecular sciences 14, 18824-18849, doi:10.3390/ijms140918824 (2013).
    8 Itamochi, H. et al. Whole-genome sequencing revealed novel prognostic biomarkers and promising targets for therapy of ovarian clear cell carcinoma. British Journal of Cancer 117, 717-724, doi:10.1038/bjc.2017.228 (2017).
    9 Jorgensen, P. L., Håkansson, K. O. & Karlish, S. J. D. Structure and Mechanism of Na,K-ATPase: Functional Sites and Their Interactions. Annu Rev Physiol 65, 817-849, doi:10.1146/annurev.physiol.65.092101.142558 (2003).
    10 Aperia, A. New roles for an old enzyme: Na,K-ATPase emerges as an interesting drug target. Journal of Internal Medicine 261, 44-52, doi:10.1111/j.1365-2796.2006.01745.x (2007).
    11 Clausen, M. V., Hilbers, F. & Poulsen, H. The Structure and Function of the Na,K-ATPase Isoforms in Health and Disease. Front Physiol 8, 371-371, doi:10.3389/fphys.2017.00371 (2017).
    12 Felippe Gonçalves-de-Albuquerque, C., Ribeiro Silva, A., Ignácio da Silva, C., Caire Castro-Faria-Neto, H. & Burth, P. Na/K Pump and Beyond: Na/K-ATPase as a Modulator of Apoptosis and Autophagy. Molecules 22, 578, doi:10.3390/molecules22040578 (2017).
    13 Alevizopoulos, K. et al. Functional characterization and anti-cancer action of the clinical phase II cardiac Na+/K+ ATPase inhibitor istaroxime: in vitro and in vivo properties and cross talk with the membrane androgen receptor. Oncotarget 7, 24415-24428, doi:10.18632/oncotarget.8329 (2016).
    14 Khajah, M. A., Mathew, P. M. & Luqmani, Y. A. Na+/K+ ATPase activity promotes invasion of endocrine resistant breast cancer cells. PLoS One 13, e0193779-e0193779, doi:10.1371/journal.pone.0193779 (2018).
    15 Geering, K. Function of FXYD Proteins, Regulators of Na, K-ATPase. Journal of Bioenergetics and Biomembranes 37, 387-392, doi:10.1007/s10863-005-9476-x (2005).
    16 Mayan, H., Farfel, Z. & Karlish, S. J. D. Renal Mg handling, FXYD2 and the central role of the Na,K-ATPase. Physiol Rep 6, e13843-e13843, doi:10.14814/phy2.13843 (2018).
    17 Hsu, I. L. et al. Targeting FXYD2 by cardiac glycosides potently blocks tumor growth in ovarian clear cell carcinoma. Oncotarget 7, 62925-62938, doi:10.18632/oncotarget.7497 (2016).
    18 Lingrel, J. B. The physiological significance of the cardiotonic steroid/ouabain-binding site of the Na,K-ATPase. Annu Rev Physiol 72, 395-412, doi:10.1146/annurev-physiol-021909-135725 (2010).
    19 Mijatovic, T. et al. Cardiotonic steroids on the road to anti-cancer therapy. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer 1776, 32-57, doi:https://doi.org/10.1016/j.bbcan.2007.06.002 (2007).
    20 He, L. et al. Autophagy: The Last Defense against Cellular Nutritional Stress. Adv Nutr 9, 493-504, doi:10.1093/advances/nmy011 (2018).
    21 White, E., Mehnert, J. M. & Chan, C. S. Autophagy, Metabolism, and Cancer. Clin Cancer Res 21, 5037-5046, doi:10.1158/1078-0432.CCR-15-0490 (2015).
    22 Amaravadi, R. K. et al. Principles and current strategies for targeting autophagy for cancer treatment. Clin Cancer Res 17, 654-666, doi:10.1158/1078-0432.CCR-10-2634 (2011).
    23 Eng, C. H. & Abraham, R. T. The autophagy conundrum in cancer: influence of tumorigenic metabolic reprogramming. Oncogene 30, 4687-4696, doi:10.1038/onc.2011.220 (2011).
    24 Maruyama, T. & Noda, N. N. Autophagy-regulating protease Atg4: structure, function, regulation and inhibition. The Journal of Antibiotics 71, 72-78, doi:10.1038/ja.2017.104 (2018).
    25 Yu, L., Chen, Y. & Tooze, S. A. Autophagy pathway: Cellular and molecular mechanisms. Autophagy 14, 207-215, doi:10.1080/15548627.2017.1378838 (2018).
    26 Sun, H. et al. Oligonucleotide Aptamers: New Tools for Targeted Cancer Therapy. Molecular Therapy - Nucleic Acids 3, e182, doi:https://doi.org/10.1038/mtna.2014.32 (2014).
    27 Zhou, J. & Rossi, J. Aptamers as targeted therapeutics: current potential and challenges. Nat Rev Drug Discov 16, 181-202, doi:10.1038/nrd.2016.199 (2017).
    28 Ruiz Ciancio, D. et al. Aptamers as Diagnostic Tools in Cancer. Pharmaceuticals (Basel) 11, 86, doi:10.3390/ph11030086 (2018).
    29 Kim, M., Kim, D.-M., Kim, K.-S., Jung, W. & Kim, D.-E. Applications of Cancer Cell-Specific Aptamers in Targeted Delivery of Anticancer Therapeutic Agents. Molecules 23, 830, doi:10.3390/molecules23040830 (2018).
    30 Leu, J. I., Crissey, M. A., Leu, J. P., Ciliberto, G. & Taub, R. Interleukin-6-induced STAT3 and AP-1 amplify hepatocyte nuclear factor 1-mediated transactivation of hepatic genes, an adaptive response to liver injury. Mol Cell Biol 21, 414-424, doi:10.1128/MCB.21.2.414-424.2001 (2001).
    31 Nishio, H. et al. Identification of a novel first exon in the human dystrophin gene and of a new promoter located more than 500 kb upstream of the nearest known promoter. J Clin Invest 94, 1037-1042, doi:10.1172/JCI117417 (1994).
    32 Seif, F. et al. The role of JAK-STAT signaling pathway and its regulators in the fate of T helper cells. Cell Commun Signal 15, 23-23, doi:10.1186/s12964-017-0177-y (2017).
    33 Kiu, H. & Nicholson, S. E. Biology and significance of the JAK/STAT signalling pathways. Growth Factors 30, 88-106, doi:10.3109/08977194.2012.660936 (2012).
    34 Morris, R., Kershaw, N. J. & Babon, J. J. The molecular details of cytokine signaling via the JAK/STAT pathway. Protein Science 27, 1984-2009, doi:10.1002/pro.3519 (2018).
    35 Yu, H., Pardoll, D. & Jove, R. STATs in cancer inflammation and immunity: a leading role for STAT3. Nat Rev Cancer 9, 798-809, doi:10.1038/nrc2734 (2009).
    36 Zegeye, M. M. et al. Activation of the JAK/STAT3 and PI3K/AKT pathways are crucial for IL-6 trans-signaling-mediated pro-inflammatory response in human vascular endothelial cells. Cell Commun Signal 16, 55-55, doi:10.1186/s12964-018-0268-4 (2018).
    37 Jin, Y. et al. Involvement of the PI3K/Akt/NF-<i>κ</i>B Signaling Pathway in the Attenuation of Severe Acute Pancreatitis-Associated Acute Lung Injury by<i> Sedum sarmentosum</i> Bunge Extract. BioMed Research International 2017, 9698410, doi:10.1155/2017/9698410 (2017).
    38 Collas, P. The Current State of Chromatin Immunoprecipitation. Molecular Biotechnology 45, 87-100, doi:10.1007/s12033-009-9239-8 (2010).
    39 Al Zaid Siddiquee, K. & Turkson, J. STAT3 as a target for inducing apoptosis in solid and hematological tumors. Cell Res 18, 254-267, doi:10.1038/cr.2008.18 (2008).
    40 Verzella, D. et al. Life, death, and autophagy in cancer: NF-κB turns up everywhere. Cell Death Dis 11, 210-210, doi:10.1038/s41419-020-2399-y (2020).
    41 Greten, F. R. et al. Stat3 and NF-κB activation prevents apoptosis in pancreatic carcinogenesis. Gastroenterology 123, 2052-2063, doi:https://doi.org/10.1053/gast.2002.37075 (2002).
    42 Fan, P. et al. Modulation of nuclear factor-kappa B activation by the endoplasmic reticulum stress sensor PERK to mediate estrogen-induced apoptosis in breast cancer cells. Cell Death Discovery 4, 15, doi:10.1038/s41420-017-0012-7 (2018).
    43 Das, A. T., Tenenbaum, L. & Berkhout, B. Tet-On Systems For Doxycycline-inducible Gene Expression. Curr Gene Ther 16, 156-167, doi:10.2174/1566523216666160524144041 (2016).
    44 Kang, K. et al. An improved Tet-on system in microRNA overexpression and CRISPR/Cas9-mediated gene editing. Journal of Animal Science and Biotechnology 10, 43, doi:10.1186/s40104-019-0354-5 (2019).
    45 Calderón-Montaño, J. M. et al. Evaluating the Cancer Therapeutic Potential of Cardiac Glycosides. BioMed Research International 2014, 794930, doi:10.1155/2014/794930 (2014).
    46 Kaushik, V., Azad, N., Yakisich, J. S. & Iyer, A. K. V. Antitumor effects of naturally occurring cardiac glycosides convallatoxin and peruvoside on human ER+ and triple-negative breast cancers. Cell Death Discovery 3, 17009, doi:10.1038/cddiscovery.2017.9 (2017).
    47 Schneider, N. F. Z. et al. Cardiac Glycoside Glucoevatromonoside Induces Cancer Type-Specific Cell Death. Frontiers in Pharmacology 9, doi:10.3389/fphar.2018.00070 (2018).
    48 Current Drug Therapy: Cardiac Glycosides. American Journal of Hospital Pharmacy 35, 1495-1507, doi:10.1093/ajhp/35.12.1495 (1978).
    49 Mason, D. T. & Foerster, J. M. in Cardiac Glycosides: Part II: Pharmacokinetics and Clinical Pharmacology (ed Kurt Greeff) 275-297 (Springer Berlin Heidelberg, 1981).
    50 Radzyukevich, T. L., Lingrel, J. B. & Heiny, J. A. The cardiac glycoside binding site on the Na,K-ATPase α2 isoform plays a role in the dynamic regulation of active transport in skeletal muscle. Proceedings of the National Academy of Sciences 106, 2565, doi:10.1073/pnas.0804150106 (2009).
    51 Hauck, C. et al. Isoform specificity of cardiac glycosides binding to human Na+,K+-ATPase alpha1beta1, alpha2beta1 and alpha3beta1. Eur J Pharmacol 622, 7-14, doi:10.1016/j.ejphar.2009.08.039 (2009).
    52 Gaut, J. P., Crimmins, D. L., Lockwood, C. M., McQuillan, J. J. & Ladenson, J. H. Expression of the Na+/K+-transporting ATPase gamma subunit FXYD2 in renal tumors. Modern Pathology 26, 716-724, doi:10.1038/modpathol.2012.202 (2013).
    53 Arystarkhova, E. Beneficial Renal and Pancreatic Phenotypes in a Mouse Deficient in FXYD2 Regulatory Subunit of Na,K-ATPase. Front Physiol 7, doi:10.3389/fphys.2016.00088 (2016).
    54 Fu, Z. & Xiang, J. Aptamers, the Nucleic Acid Antibodies, in Cancer Therapy. International Journal of Molecular Sciences 21, doi:10.3390/ijms21082793 (2020).
    55 Zhang, Y., Lai, B. S. & Juhas, M. Recent Advances in Aptamer Discovery and Applications. Molecules 24, 941, doi:10.3390/molecules24050941 (2019).
    56 Kaur, H., Bruno, J. G., Kumar, A. & Sharma, T. K. Aptamers in the Therapeutics and Diagnostics Pipelines. Theranostics 8, 4016-4032, doi:10.7150/thno.25958 (2018).
    57 Kinn Rød, A. M., Harkestad, N., Jellestad, F. K. & Murison, R. Comparison of commercial ELISA assays for quantification of corticosterone in serum. Scientific Reports 7, 6748, doi:10.1038/s41598-017-06006-4 (2017).
    58 Koczula, K. M. & Gallotta, A. Lateral flow assays. Essays Biochem 60, 111-120, doi:10.1042/EBC20150012 (2016).
    59 Mehrotra, P. Biosensors and their applications - A review. J Oral Biol Craniofac Res 6, 153-159, doi:10.1016/j.jobcr.2015.12.002 (2016).
    60 Moutsiopoulou, A., Broyles, D., Dikici, E., Daunert, S. & Deo, S. K. Molecular Aptamer Beacons and Their Applications in Sensing, Imaging, and Diagnostics. Small 15, 1902248, doi:10.1002/smll.201902248 (2019).
    61 Das, P. M. & Bast, R. C., Jr. Early detection of ovarian cancer. Biomark Med 2, 291-303, doi:10.2217/17520363.2.3.291 (2008).

    無法下載圖示
    校外:不公開
    電子論文及紙本論文均尚未授權公開
    QR CODE