簡易檢索 / 詳目顯示

研究生: 陳信宇
Chen, Xin-Yu
論文名稱: 金目鱸虹彩病毒所誘發粒線體參與魚類細胞株死亡之研究
Characterization of giant seaperch iridovirus (GSIV) induces mitochondria-mediated cell death in fish cells
指導教授: 洪健睿
Hong, Jiann-Ruey
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生物科技研究所
Institute of Biotechnology
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 84
中文關鍵詞: 虹彩病毒科巨大細胞屬粒線體凋亡B-細胞淋巴瘤基因2 家族蛋白
外文關鍵詞: Iridoviridae, Megalocytivirus, Mitochondria, Apoptosis, Bcl-2 family proteins
相關次數: 點閱:112下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 虹彩病毒造成許多淡水或海水經濟魚種的系統性感染。其中之ㄧ為金目鱸虹彩病毒 (giant seaperch iridovirus ; GSIV),分類上為虹彩病毒科 (Iridoviridae) 新區分出來的巨大細胞屬 (Megalocytivirus) 一員,與該屬的代表種之ㄧ嘉魶虹彩病毒 (red sea bream iridovirus ; RSIV) 在親源分析上序列非常接近。雖然有不少文獻指出虹彩病毒會導致宿主細胞進行細胞凋亡 (apoptosis),但其中提到巨大細胞屬的病毒相關之研究卻很少,且虹彩病毒科病毒誘發細胞凋亡的機制亦尚未明瞭。在感染的石斑魚鰭細胞株 (GF-1) 細胞可以發現明顯細胞病變,並可觀察到下列現象:Annexin V-positive 或 PI-positive的細胞、粒線體膜電位喪失(mitochondrial membrane potential loss ; MMP loss)、mitochondria-mediated pathway 相關的 Bcl-2 family 蛋白 Bax 與 Bak 表現量增加,以及 caspase-3/7 與 caspase-9 活化。經由新合成蛋白抑制劑 CHX (Cycloheximide)、粒線體膜電位喪失抑制劑 BKA (Bongkrekic acid) 處理,皆可有效減緩上述情形的發生,並增加細胞存活率。穩定表現可抑制cytochrome c 釋放的Bcl-2 family 蛋白 zebra fish Bcl-xl 於石斑魚肝細胞株 (GL-av cells),亦可抑制粒線體膜電位喪失,並增加存活率。綜合以上結果,GSIV 能透過 mitochondria-mediated pathway 誘發宿主細胞走向凋亡,而此過程需要新生蛋白的合成。此外,虹彩病毒科病毒誘使宿主細胞 Bcl-2 family 蛋白的表現量改變之現象目前為止尚未發表過,本實驗首次觀察到此現象。

    A variety of freshwater and marine economical fish species are threatened by iridovirus-caused systemic diseases. One of them is giant seaperch iridovirus (GSIV), a red sea bream iridovirus (RSIV)-like Iridoviridae virus isolated from giant seaperch (Lates calcarifer). RSIV is a typical strain of Megalocytivirus, a new genus of Iridoviridae. Recently, some papers reported to inducing host cell apoptosis by iridovirus, but very few of them was induced by Megalocytivirus. Moreover, there is no evidence defining the molecular mechanism of this death pathway. GSIV infection induces the following features of apoptosis:(1) Annexin V-positive or PI-positive cells,(2) severe mitochondrial membrane potential (MMP) loss,(3) Bcl-2 family protein Bax and Bad upregulation and (4) caspase-3/7 and caspase-9 activation. Treatment with either protein newly synthesized inhibitor CHX (Cycloheximide) or treatment with MMP loss inhibitor BKA (Bongkrekic acid), could effectively block those events and enhanced the cellular viability. Anti-apoptotic Bcl-xl protein can prevent cytochrome c release and block MMP loss to enhance the cellular viability. Taken together, our results suggest that GSIV may induce mitochondria-mediated cell death via newly synthesized proteins-dependent pathway. Our study may provide new insight into iridovirus-induced molecular pathogenesis.

    目錄 中文摘要 II 英文摘要 IV 誌謝 VI 目錄 VII 圖表目錄 X 第一章 緒論 第一節、 虹彩病毒科 (Iridoviridae) 簡介 …………………01 第二節、 巨大細胞屬病毒 (Megalocytivirus) 簡介…………03 第三節、 巨大細胞屬病毒與魚類疾病 …………………………04 第四節、 於台灣分離的虹彩病毒株 ……………………………06 第五節、 病毒感染與細胞凋亡 …………………………………07 第六節、 虹彩病毒對細胞存活的影響 …………………………08 第七節、 細胞壞死與細胞凋亡 …………………………………10 第八節、 細胞凋亡階段 …………………………………………11 第九節、 細胞凋亡兩大路徑 ……………………………………11 第十節、 粒線體與細胞凋亡 ……………………………………11 第十一節、 Bcl-2 family 簡介 ………………………………13 第十二節、 研究目的與機………………………………………14 第二章 材料與方法 第一節、 實驗材料 ………………………………………………15 第二節、 儀器 ……………………………………………………21 第三節、 實驗方法 ………………………………………………23 第三章 結果 第一節、 GSIV 可在 GF-1 細胞內表現基因,並且進行複製 …33 第二節、 GSIV 可感染 GF-1 細胞並造成一系列明顯的 CPE 外觀變化 ………………………………………………… 33 第三節、 GSIV 感染 GF-1 細胞造成細胞凋亡特徵之分析…… 34 第四節、 凋亡機制之分析:GSIV 誘發 GF-1 細胞產生凋亡現象涉及新生蛋白的合成 ………………………………… 36 第五節、 凋亡機制之分析:GSIV 誘發 GF-1 細胞產生凋亡現象涉及粒線體的參與 …………………………………… 37 第六節、 Bcl-2 family 蛋白與 GSIV 所誘導粒線體參與之宿主細胞凋亡間的關係 …………………………………… 39 第七節、 GSIV 感染宿主細胞 GF-1 後 caspase 活化的情形 40 第四章 討論 第一節、 GSIV 於不同宿主細胞內的複製情形………………… 42 第二節、 GSIV 在 GF-1 cells 所引起的現象為非典型細胞凋亡 ……………………………………………………… 42 第三節、 GSIV 感染後細胞彼此黏附現象之探討……………… 43 第四節、 GSIV 與 Bcl-2 家族蛋白之關係 …………………… 44 第五節、 虹彩病毒與凋亡有關之基因相關研究現況 ………… 45 第六節、 虹彩病毒科病毒株品系界定的障礙 ………………… 46 第七節、 未來與展望 …………………………………… 47 參考文獻 ………………………………………………………………49 圖表附錄 ………………………………………………………………54 自述 ……………………………………………………………………84 圖表目錄 表一. Primers 設計序列……………………………………54 圖.1 : pEGFP-Bcl-xl 載體圖譜與斑馬魚 Bcl-xl 核酸序列 …… 55 圖.2 : 細胞壞死與細胞凋亡………………………………………… 56 圖.3 : Bcl-2 家族蛋白成員與功能、序列上的區分…………………57 圖.4 : GSIV 可在 GF-1 細胞 內表現基因,並且進行複製…………58 圖.5 : GSIV 可感染 GF-1 細胞並造成一系列明顯的 CPE 外觀變化 ………………………………………………………………………59 圖.6 : GSIV 感染 GF-1 細胞後第三天即出現明顯細胞核斷裂情形 ………………………………………………………………………60 圖.7 : GSIV 感染 GF-1 細胞後出現 Annexin-V and/or PI positive 細胞…………………………………………………………61 圖.8 : GSIV 感染 GF-1 細胞後出現 Annexin-V and/or PI positive 細胞之量化圖………………………………………………62 圖.9 : GSIV 感染 GF-1 細胞後造成粒線體膜電位喪失………… 63 圖.10 : GSIV 感染 GF-1 細胞後造成粒線體膜電位喪失細胞的量化圖 ……………………………………………………………………64 圖.11 : 新合成蛋白抑制劑 CHX 可有效減少 GSIV 造成 CPE 的細胞數並提高存活率 ……………………………………………………65 圖.12 : 新合成蛋白抑制劑 CHX 可有效減少 GSIV 造成 Annexin-V and/or PI positive 的細胞數 …………………………66 圖.13 :新合成蛋白抑制劑 CHX 可有效減少 GSIV 造成 Annexin-V and/or PI positive 的細胞數之量化圖 ……………………………67 圖.14 : 新合成蛋白抑制劑 CHX 可有效減少 GSIV 造成粒線體膜電位去極化的細胞數 …………………………………………………68 圖.15 : 新合成蛋白抑制劑 CHX 可有效減少 GSIV 造成粒線體膜電位去極化的細胞數 …………………………………………………69 圖.16 : 粒線體膜電位喪失抑制劑 BKA可有效減少出現 GSIV 造成CPE 的細胞數並提高存活率 …………………………………………70 圖.17 : 粒線體膜電位喪失抑制劑 BKA 可有效減少 GSIV 造成 Annexin-V and/or PI positive 的細胞數 …………………………71 圖.18 : 粒線體膜電位喪失抑制劑 BKA 可有效減少 GSIV 造成 Annexin-V and/or PI positive 的細胞數之量化圖 ……………… 72 圖.19 : 粒線體膜電位喪失抑制劑 BKA 可有效減少 GSIV 造成粒線體膜電位去極化的細胞數 …………………………………………73 圖.20 : 粒線體膜電位喪失抑制劑BKA 可有效減少 GSIV 造成粒線體膜電位去極化的細胞數…………………………………………… 74 圖.21 : Bcl-xl 於 GL-av 細胞穩定表現可有效減少 GSIV 造成粒線體膜電位去極化 ……………………………………………………75圖.22 : 新合成蛋白抑制劑 CHX 可有效減少 GSIV 造成粒線體膜電位去極化的細胞數 …………………………………………………77 圖.23 : GSIV 感染誘使 Bax 蛋白表現量增加……………………78 圖.24 : GSIV 感染誘使 Bak 蛋白表現量增加……………………79 圖.25 : 使用新合成蛋白抑制劑 CHX 處理細胞能減少病毒感染後 Bax 蛋白的表現量 ……………………………………………………80 圖.26 : 使用新合成蛋白抑制劑 CHX 處理細胞能減少病毒感染後 Bak 蛋白的表現量 ……………………………………………………81 圖.27 : GSIV 感染宿主細胞 GF-1 後誘發 caspase-3/7 活化 ………………………………………………………………………82 圖.28 : GSIV 感染宿主細胞 GF-1 後誘發 caspase-9 活化……83

    Adams JM, Cory S. The Bcl-2 protein family: arbiters of cell survival. Science (1998) 281:1322-1326.
    Ashkenazi A, Dixit VM. Death receptors: signaling and modulation. Science (1998) 281:1305-1308.
    Bouchier-Hayes L, Martin SJ. CARD games in apoptosis and immunity. EMBO Rep (2002) 3:616-621.
    Brown DG, Sun XM, Cohen GM. Dexamethasone-induced apoptosis involves cleavage of DNA to large fragments prior to internucleosomal fragmentation. J Biol Chem (1993) 268:3037-3039.
    Chao CB, Chen CY, Lai YY, Lin CS, Huang HT. Histological, ultrastructural, and in situ hybridization study on enlarged cells in grouper Epinephelus hybrids infected by grouper iridovirus in Taiwan (TGIV). Dis Aquat Organ (2004) 58:127-142.
    Chao DT, Korsmeyer SJ. BCL-2 family: regulators of cell death. Annu Rev Immunol (1998) 16:395-419.
    Chinchar VG, Bryan L, Wang J, Long S, Chinchar GD. Induction of apoptosis in frog virus 3-infected cells. Virology (2003) 306:303-312.
    Chinchar VG, et al. Iridoviridae. Virus taxonomy, VIIIth Report of the ICTV. Elsevier=Academic Press, London (2005):145–162.
    Chiou PP, Chen YC, Lai YS. Caspase-dependent induction of apoptosis in barramundi, Lates calcarifer (Bloch), muscle cells by grouper iridovirus. J Fish Dis (2009) 32:997-1005.
    Chitnis NS, D'Costa SM, Paul ER, Bilimoria SL. Modulation of iridovirus-induced apoptosis by endocytosis, early expression, JNK, and apical caspase. Virology (2008) 370:333-342.
    Chou HY, Hsu CC, Peng TY. Isolation and characterization of a pathogenic iridovirus from cultured grouper (Epinephelus sp.) in Taiwan. Fish Pathol. (1998) 33:201–206.
    Collins M. Potential roles of apoptosis in viral pathogenesis. Am J Respir Crit Care Med (1995) 152:S20-24.
    Cory S, Huang DC, Adams JM. The Bcl-2 family: roles in cell survival and oncogenesis. Oncogene (2003) 22:8590-8607.
    Cruchten S, Den Broeck W. Morphological and biochemical aspects of apoptosis, oncosis and necrosis. Anat Histol Embryol (2002) 31:214-223.
    Desagher S, Martinou JC. Mitochondria as the central control point of apoptosis. Trends Cell Biol (2000) 10:369-377.
    Dumont A, Hehner SP, Hofmann TG, Ueffing M, Droge W, Schmitz ML. Hydrogen peroxide-induced apoptosis is CD95-independent, requires the release of mitochondria-derived reactive oxygen species and the activation of NF-kappaB. Oncogene (1999) 18:747-757.
    Eick D, Hermeking H. Viruses as pacemakers in the evolution of defence mechanisms against cancer. Trends Genet (1996) 12:4-6.
    Essani K, Granoff A. Amphibian and piscine iridoviruses proposal for nomenclature and taxonomy based on molecular and biological properties. Intervirology (1989) 30:187-193.
    Essbauer S, Ahne W. The epizootic haematopoietic necrosis virus (Iridoviridae) induces apoptosis in vitro. J Vet Med B Infect Dis Vet Public Health (2002) 49:25-30.
    Franceschi C. Cell proliferation, cell death and aging. Aging (Milano) (1989) 1:3-15.
    Go J, Lancaster M, Deece K, Dhungyel O, Whittington R. The molecular epidemiology of iridovirus in Murray cod (Maccullochella peelii peelii) and dwarf gourami (Colisa lalia) from distant biogeographical regions suggests a link between trade in ornamental fish and emerging iridoviral diseases. Mol Cell Probes (2006) 20:212-222.
    Green DR, Reed JC. Mitochondria and apoptosis. Science (1998) 281:1309-1312.
    Guidot DM. Endotoxin pretreatment in vivo increases the mitochondrial respiratory capacity in rat hepatocytes. Arch Biochem Biophys (1998) 354:9-17.
    Harrington EA, Bennett MR, Fanidi A, Evan GI. c-Myc-induced apoptosis in fibroblasts is inhibited by specific cytokines. EMBO J (1994) 13:3286-3295.
    He JG, et al. Complete genome analysis of the mandarin fish infectious spleen and kidney necrosis iridovirus. Virology (2001) 291:126-139.
    Henderson PJ, Lardy HA. Bongkrekic acid. An inhibitor of the adenine nucleotide translocase of mitochondria. J Biol Chem (1970) 245:1319-1326.
    Hong JR, Gong HY, Wu JL. IPNV VP5, a novel anti-apoptosis gene of the Bcl-2 family, regulates Mcl-1 and viral protein expression. Virology (2002) 295:217-229.
    Hong JR, Lin TL, Hsu YL, Wu JL. Apoptosis precedes necrosis of fish cell line with infectious pancreatic necrosis virus infection. Virology (1998) 250:76-84.
    Hsu SY, Kaipia A, Zhu L, Hsueh AJ. Interference of BAD (Bcl-xL/Bcl-2-associated death promoter)-induced apoptosis in mammalian cells by 14-3-3 isoforms and P11. Mol Endocrinol (1997) 11:1858-1867.
    Hu GB, Cong RS, Fan TJ, Mei XG. Induction of apoptosis in a flounder gill cell line by lymphocystis disease virus infection. J Fish Dis (2004) 27:657-662.
    Huang X, Huang Y, Gong J, Yan Y, Qin Q. Identification and characterization of a putative lipopolysaccharide-induced TNF-alpha factor (LITAF) homolog from Singapore grouper iridovirus. Biochem Biophys Res Commun (2008) 373:140-145.
    Huang X, et al. Singapore grouper iridovirus, a large DNA virus, induces nonapoptotic cell death by a cell type dependent fashion and evokes ERK signaling. Apoptosis (2011a) 16:831-845.
    Huang Y, Huang X, Cai J, Ye F, Qin Q. Involvement of the mitogen-activated protein kinase pathway in soft-shelled turtle iridovirus-induced apoptosis. Apoptosis (2011b) 16:581-593.
    Huang YH, Huang XH, Gui JF, Zhang QY. Mitochondrion-mediated apoptosis induced by Rana grylio virus infection in fish cells. Apoptosis (2007) 12:1569-1577.
    Imajoh M, Sugiura H, Oshima S. Morphological changes contribute to apoptotic cell death and are affected by caspase-3 and caspase-6 inhibitors during red sea bream iridovirus permissive replication. Virology (2004) 322:220-230.
    Ince IA, Westenberg M, Vlak JM, Demirbag Z, Nalcacioglu R, van Oers MM. Open reading frame 193R of Chilo iridescent virus encodes a functional inhibitor of apoptosis (IAP). Virology (2008) 376:124-131.
    Iwanowicz LR, Goodwin AE. A new bacilliform fathead minnow rhabdovirus that produces syncytia in tissue culture. Arch Virol (2002) 147:899-915.
    Jakob NJ, Muller K, Bahr U, Darai G. Analysis of the first complete DNA sequence of an invertebrate iridovirus: coding strategy of the genome of Chilo iridescent virus. Virology (2001) 286:182-196.
    Jeong JB, Jun LJ, Yoo MH, Kim MS, Komisar JL, Jeong HD. Characterization of the DNA nucleotide sequences in the genome of red sea bream iridoviruses isolated in Korea. Aquaculture (2003) 220:119-133.
    Jung SJ, Oh MJ. Irudovirus-like infection associated with high mortalities of striped beakperch, Oplegnathus fasciatus (Temminck et Schlegel), in southern coastal areas of the Korean peninsula. J. Fish Dis. (2000) 23:223-226.
    Kawakami H, Nakajima K. Cultured fish species affected by red sea bream iridoviral disease from 1996 to 2000. Fish Pathol. (2002) 37:45-47.
    Kerr JF. Neglected opportunities in apoptosis research. Trends Cell Biol (1995) 5:55-57.
    Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer (1972) 26:239-257.
    Kroemer G. The proto-oncogene Bcl-2 and its role in regulating apoptosis. Nat Med (1997) 3:614-620.
    Kumar S, Harvey NL. Role of multiple cellular proteases in the execution of programmed cell death. FEBS Lett (1995) 375:169-173.
    Lai YS, et al. Two iridovirus-susceptible cell lines established from kidney and liver of grouper, Epinephelus awoara (Temminck & Schlegel), and partial characterization of grouper iridovirus. J. Fish Dis. (2000) 23:379–388.
    Lin PW, et al. Iridovirus Bcl-2 protein inhibits apoptosis in the early stage of viral infection. Apoptosis (2008) 13:165-176.
    Marschang RE, et al. Isolation and characterization of an iridovirus from Hermann's tortoises (Testudo hermanni). Arch Virol (1999) 144:1909-1922.
    Mastrangelo AJ, Zou S, Hardwick JM, Betenbaugh MJ. Antiapoptosis chemicals prolong productive lifetimes of mammalian cells upon Sindbis virus vector infection. Biotechnol Bioeng (1999) 65:298-305.
    Monti D, et al. Cell proliferation and cell death in immunosenescence. Ann N Y Acad Sci (1992) 663:250-261.
    Nakajima K, Kunita J. [Red sea bream iridoviral disease]. Uirusu (2005) 55:115-125.
    Oldstone MB. How viruses escape from cytotoxic T lymphocytes: molecular parameters and players. Virology (1997) 234:179-185.
    Qin QW, et al. Electron microscopic observations of a marine fish iridovirus isolated from brown-spotted grouper, Epinephelus tauvina. J Virol Methods (2001) 98:17-24.
    Regenmortel MHV, et al. Virus taxonomy, Seventh Report of the International Committee on Taxonomy of Viruses. Academic Press, New York (1999).
    Roulston A, Marcellus RC, Branton PE. Viruses and apoptosis. Annu Rev Microbiol (1999) 53:577-628.
    Saelens X, Festjens N, Vande Walle L, van Gurp M, van Loo G, Vandenabeele P. Toxic proteins released from mitochondria in cell death. Oncogene (2004) 23:2861-2874.
    Samali A, Gorman AM, Cotter TG. Apoptosis - the story so far. Experientia (1996) 52:933-941.
    Scarlett JL, Sheard PW, Hughes G, Ledgerwood EC, Ku HH, Murphy MP. Changes in mitochondrial membrane potential during staurosporine-induced apoptosis in Jurkat cells. FEBS Lett (2000) 475:267-272.
    Shi CY, Jia KT, Yang B, Huang J. Complete genome sequence of a Megalocytivirus (family Iridoviridae) associated with turbot mortality in China. Virol J (2010) 7:159.
    Shimizu S, Ide T, Yanagida T, Tsujimoto Y. Electrophysiological study of a novel large pore formed by Bax and the voltage-dependent anion channel that is permeable to cytochrome c. J Biol Chem (2000) 275:12321-12325.
    Shimizu S, Narita M, Tsujimoto Y. Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC. Nature (1999) 399:483-487.
    Shoshan-Barmatz V, Gincel D. The voltage-dependent anion channel: characterization, modulation, and role in mitochondrial function in cell life and death. Cell Biochem Biophys (2003) 39:279-292.
    Song JY, et al. Genetic variation and geographic distribution of megalocytiviruses. J Microbiol (2008) 46:29-33.
    Steller H. Mechanisms and genes of cellular suicide. Science (1995) 267:1445-1449.
    Tapiovaara H, Olesen NJ, Linden J, Rimaila-Parnanen E, von Bonsdorff CH. Isolation of an iridovirus from pike-perch Stizostedion lucioperca. Dis Aquat Organ (1998) 32:185-193.
    Tidona CA, Schnitzler P, Kehm R, Darai G. Is the major capsid protein of iridoviruses a suitable target for the study of viral evolution? Virus Genes (1998) 16:59-66.
    Vaux DL, Strasser A. The molecular biology of apoptosis. Proc Natl Acad Sci U S A (1996) 93:2239-2244.
    Wang CS, Shih HH, Ku CC, Chen SN. Studies on epizootic iridovirus infection among red sea bream, Pagrus major (Temminck & Schlegel), cultured in Taiwan. J Fish Dis (2003) 26:127-133.
    Wang YQ, Lu L, Weng SP, Huang JN, Chan SM, He JG. Molecular epidemiology and phylogenetic analysis of a marine fish infectious spleen and kidney necrosis virus-like (ISKNV-like) virus. Arch Virol (2007) 152:763-773.
    Wen CM, C.W. L, C.S. W, Y.H. C, H.Y. H. Development of two cell lines from Epinephelus coioides brain tissue for characterization of betanodavirus and megalocytivirus infectivity and propagation. Aquaculture (2008) 278:14-21.
    Whittington RJ, Becker JA, Dennis MM. Iridovirus infections in finfish - critical review with emphasis on ranaviruses. J Fish Dis (2010) 33:95-122.
    Whittington RJ, Reddacliff GL. Influence of environmental temperature on experimental infection of redfin perch (Perca fluviatilis) and rainbow trout (Oncorhynchus mykiss) with epizootic haematopoietic necrosis virus, an Australian iridovirus. Aust Vet J (1995) 72:421-424.
    Williams T. The iridoviruses. Adv Virus Res (1996) 46:345-412.
    Williams T, Barbosa-Solomieu V, Chinchar VG. A decade of advances in iridovirus research. Adv Virus Res (2005) 65:173-248.
    Wolf K, Darlington RW. Channel catfish virus: a new herpesvirus of ictalurid fish. J Virol (1971) 8:525-533.

    下載圖示 校內:2014-09-02公開
    校外:2014-09-02公開
    QR CODE