簡易檢索 / 詳目顯示

研究生: 徐貴鳳
Hsu, Kuei-Feng
論文名稱: 橄欖石結構之鋰鐵磷酸/碳複合陰極材料之研究
Study on Olivine Structural LiFePO4/C Composite Cathode Material
指導教授: 蔡三元
Tsay, Sun-Yuan
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 175
中文關鍵詞: 鋰電池陰極材料鋰鐵磷酸
外文關鍵詞: Lithium ion battery, battery, cathode material, triphylite, LiFePO4
相關次數: 點閱:70下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要

    本研究最主要的目的,為開發低成本之LiFePO4/C複合陰極材料的製程。於本研究中已成功的利用溶膠-凝膠法,在短時間及低耗能下,合成出LiFePO4/C複合陰極材料,其中溶膠-凝膠法所使用的檸檬酸,在本製程中同時扮演螯合劑及複合材料中碳的來源,結果顯示,這些檸檬酸所產生的碳,不但可以增加複合材料的導電度,同時也可以抑制LiFePO4晶粒的成長,並成功合成出奈米尺度純相的LiFePO4。不同熱裂解-煆燒溫度下(450~950oC),所得之LiFePO4晶粒大小約在20~30nm之間。所得LiFePO4/C複合陰極材料之導電性隨著熱裂解-煆燒溫度之增加而提昇,但當煆燒溫度上升到950oC時,其導電性則會些微的下降,這是因為複合材料的碳含量及其石墨化程度之綜合影響。煆燒溫度在850oC時,所合成出來的LiFePO4/C複合陰極材料,具有最佳之電化學特性及導電度(10-3 S/cm-1),且由結果發現,LiFePO4的循環特性與充放電速率程序有關,其中以經過低充放電速率活化過之LiFePO4材料,具有較佳的循環特性。

    為了更進一步降低製程的成本,我們將溶膠-凝膠法中所使用的鐵鹽換成較低成本的鐵粉,同時利用X光吸收光譜的技術,對不同條件所得前驅物及其相對條件所得複合材料的局部結構與的氧化狀態進行分析,以深入探討其形成之機制。結果發現當R值(檸檬酸莫爾數與金屬離子總莫爾數之比值)為1及0.75時,鐵粉主要會氧化成二價的鐵離子,而當R值下降至0.5時,鐵粉則氧化成三價的鐵離子,雖然這些鐵離子,在熱裂解-煆燒過程中均會還原成二價的鐵離子,但是R值為1及0.75的前驅物,所熱裂解-煆燒成的LiFePO4,具有較佳的晶體有序結構,而R值為0.5的前驅物,所熱裂解-煆燒而成的LiFePO4之結晶結構有序化程度則較差。針對晶體繞射圖譜,以Riteveld法進行分析時,發現以R值為0.5的前驅物,熱裂解-煆燒所得的LiFePO4晶體之陽離子混合情形較嚴重,其與吸收光譜所得結果相吻合。另外,本研究中亦提出前驅物與合成的LiFePO4粉末的結構示意圖。

    由上述之結果得知,鐵粉會氧化成二價鐵離子,依R值之大小,會有不同程度之二價鐵離子和溶氧繼續反應成三價的鐵離子,降低合成材料之有序化程度,影響其電化學性能。為了能夠提升LiFePO4的充放電性能,本研究針對不同R值合成的LiFePO4/C複合材料的電化學特性及材料特性進行探討。在R值為1、0.75與0.5所合成的LiFePO4的碳含量為10%、8%及5%,而在熱裂解-煆燒過程中所生成的碳,可以均勻地分布在LiFePO4的結構中與晶粒之間,雖然將R值提升至1時,所合成的LiFePO4/C複合陰極材料的導電度會有所提升,但是太多的碳,也同時阻礙了鋰離子的擴散路徑。而當R值下降至0.5時,由於含碳量的下降,而導致複合陰極材料的導電度下降,而當R值為0.75時,所合成的複合材料之含碳量最適當,且LiFePO4晶體具有較佳之有序化,在室溫及1/40C的充放電速率時,具有最高的放電電容量(153 mAh/g)。顯示,LiFePO4晶體之有序化程度與存在LiFePO4的結構與晶粒之間的含碳量及其型態對電化學特性影響,值得進一步深入了解與探討。

    Abstract

    The main objective of this work is to develop a low cost process for the synthesis of LiFePO4/carbon composite cathode materials. The LiFePO4/carbon composite cathode materials were successfully synthesized by a developed sol–gel process. The citric acid in the developed sol–gel process plays the role not only as a complexing agent but also as a carbon source, which improves the conductivity of the composites and hinders the growth of LiFePO4 particles. The nano-sized LiFePO4 particles without the impurity phase were successfully synthesized. The grain size of LiFePO4 particles in the range of 20~30 nm is obtained at calcined temperatures from 450 to 850 oC. Increasing the calcination temperature leads to a decrease in the carbon content but an increase in the conductivity of the composites in the range of 400–850 oC. However, the conductivity slightly decreases if the calcination temperature further increases to 950 oC. The LiFePO4/carbon composite synthesized at 850 oC shows the highest conductivity (10-3 S cm-1), the highest specific capacity, and the best rate capability among the synthesized materials. It is worthy to note that the cell performance of the LiFePO4 depends on the electrochemical cycling procedure employed.

    To further reduce the cost of raw materials, iron salts were replaced by iron powders in the sol-gel process. The local structure and oxidation state of the precursors and the LiFePO4/C composite powders were investigated by X-ray absorption spectroscopy (XAS) to provide a deep insight into their formation mechanism. It was found that the oxidation states of iron in the precursors for R = 1 and 0.75 consist mainly of Fe(II) and traces of Fe(III). However, the oxidation state of iron in the precursor for R = 0.5 comprises mainly of Fe(III). The oxidation state of iron in all pyrolysis-sintered powders is Fe(II). The structure of the precursors and the sintered powders for R = 1 and 0.75 is more ordering than that for R = 0.5. It is consistent with the observation of the cation mixing from the Riteveld analysis of the XRD patterns. It is one of reason responsible for the better electrochemical performance of the LiFePO4/C composite material prepared at higher R. The structural scheme of the precursors and the sintered powders are proposed in this work.

    The iron powders were oxidized to Fe2+ ions which may be complexed with citric acid or be further oxidized to Fe3+ ions by the dissolved oxygen. The effect of the molar ratio of citric acid to total metal ions (R) on the structural and electrochemically properties of the synthesized compounds was studied. It is necessary to achieve an optimal amount of carbon for the synthesis of LiFePO4/C composite materials with good rate capability. The carbon contents for the samples synthesized at the molar ratio of citric acid to total metal ions of 1, 0.75 and 0.5 are 10, 8, and 5 wt%, respectively. The in situ formation of the carbon can uniformly distributed between LiFePO4 inter/intra particle. Increasing the carbon content (R=1) leads to increase the electronic conductivity but impede the Li+ ion diffusion path of the composite materials. However, decreasing the carbon content (R= 0.5) leads to decrease the electronic conductivity of the composite materials. The carbon content and distribution between LiFePO4 inter/intra particle must be given careful attention. The molar ratio of citric acid to total metal ions “R” should not be too high or too low. Samples with R (0.75) exhibited the highest initial capacity, about 153 mAh/g when cycled at 1/40 C rate at room temperature.

    目錄 中文摘要 I 英文摘要 III 致謝 V 目錄 VI 圖目錄 XIII 表目錄 XXI 第一章 緒論 1 1.1 前言 1 1.2 陰極材料 3 1.2.1層狀結構之陰極材料 4 1.2.1.1 LiCoO2陰極材料 4 1.2.1.2 LiNiO2陰極材料 7 1.2.1.3 LixNi1-yCoyO2陰極材料 10 1.2.1.4 LixNi1-y-zCoyMnzO2陰極材料 14 1.2.1.5 LiNixCo1-2xMnxO2陰極材料 17 1.2.1.6 Li[Li1/3-2x/3NixMn2/3-x/3]O2陰極材料 18 1.2.2尖晶石結構陰極材料 21 1.2.3橄欖石結構陰極材料 22 1.3 陽極材料 22 1.3.1碳材陽極材料 23 1.3.2非碳材陽極材料 24 1.3.2.1 鋰合金 24 1.3.2.2 金屬氧化物 25 1.3.2.3 矽合金與矽複合物 26 1.4 電解質 29 1.4.1液態電解質 29 1.4.2高分子電解質 30 1.4.2.1 固態高分子電解質 30 1.4.2.2 膠態高分子電解質 31 1.5 隔離膜 31 第二章 理論基礎與文獻回顧 33 2.1 鋰鐵磷酸陰極材料之文獻回顧 33 2.1.1 固態燒結法 36 2.1.2 溶膠-凝膠法 40 2.1.3 共沉澱法 46 2.1.4 微乳化法 49 2.2 研究動機 49 第三章 實驗原理與方法 51 3.1 實驗藥品 51 3.2 儀器設備 52 3.3 橄欖石結構LiFePO4 /C複合陰極材料之合成 53 3.3.1 利用檸檬酸溶膠-凝膠法製備奈米尺度的LiFePO4 /C之複合陰極材料 53 3.3.2 利用鐵粉為原料製備奈米級的LiFePO4 /C之複合陰極材料 54 3.4 有機金屬螯合前驅物之熱裂解分析 54 3.5 橄欖石結構LiFePO4/C複合陰極材料粉末性質量測 54 3.5.1 X光繞射分析 54 3.5.1.1 X光繞射原理 54 3.5.1.2 X光繞射分析條件 56 3.5.2 拉曼光譜分析 56 3.5.2.1 拉曼光譜原理 56 3.5.2.2 拉曼光譜分析條件 57 3.5.3 場發射掃描式電子顯微鏡(SEM)分析 57 3.5.3.1 場發射掃描式電子顯微鏡原理 57 3.5.3.2 場發射掃描式電子顯微鏡分析條件 58 3.5.4 穿透式電子顯微鏡(TEM)分析 58 3.5.5 X光吸收光譜之實驗儀器配置 58 3.5.6 X光吸收光譜原理 60 3.5.6.1 X光吸收近邊緣結構(XANES) 64 3.5.6.2 延伸X光吸收微細結構(EXAFS) 66 3.5.6.3 EXAFS數據分析 71 3.6 晶體結構參數之計算 82 3.7 電化學性質量測 82 3.7.1陰極極片之製作 82 3.7.2鈕扣型電池組裝 83 3.7.3充放電測試 84 3.7.4 LiFePO4/C 粉末整體之導電度測試 84 第四章利用檸檬酸溶膠-凝膠法製備奈米尺度的LiFePO4/C之複合陰極材料 86 4.1 簡介 86 4.2 有機金屬前驅物於氮氣中熱裂解及相變化分析 87 4.2.1 檸檬酸在氮氣下熱裂解行為 87 4.2.2 硝酸鋰在氮氣下熱裂解行為 87 4.2.3 磷酸二氫銨在氮氣下熱裂解行為 87 4.2.4 草酸亞鐵在氮氣下熱裂解行為 88 4.2.5 有機金屬螯合前驅物在氮氣下熱裂解行為 88 4.3 LiFePO4/C 複合陰極材料XRD晶格結構分析 94 4.3.1 不同煆燒溫度之影響 94 4.3.2 檸檬酸角色的探討 95 4.4 拉曼光譜分析 98 4.5 穿透式電子顯微鏡(TEM)觀察 102 4.6 碳的網狀結構形成之機制 104 4.7 電化學性質 105 4.8 討論 111 4.9 結論 113 第五章利用鐵粉為原料製備奈米尺度的LiFePO4/C之複合陰極材料114 5.1 簡介 114 5.2 反應機制之研究 115 5.2.1 不同R值合成有機金屬螯合前驅物之X光吸收近邊緣結構(XANES) 115 5.2.2 不同R值合成有機金屬螯合前驅物之延伸X光吸收近微細結構(EXAFS) 118 5.3 有機金屬前驅物於氮氣中熱裂解及相變化 128 5.4 LiFePO4/C複合陰極材料晶格結構分析 130 5.4.1 LiFePO4/C複合陰極材料之X光吸收近邊緣結構(XANES)分析 130 5.4.2 X光粉末繞射之分析 131 5.4.3延伸X光吸收微細結構(EXAFS) 142 5.5 FE-SEM表面分析 149 5.6 穿透式電子顯微鏡觀察 152 5.7 LiFePO4的電化學性能之討論 154 5.8 結論 158 第六章 總結論 160 參考文獻 163 作者簡介 173 著作目錄 174

    參考文獻

    (1)K. Mizushima, P. C. Jones, P. J. Wiseman, J. B. Goodenough, Mat. Res. Bull., 15 783 (1980).
    (2)R. J. Gummow, M. M. Thackeray,E. I. F. Davdid, S. Hull, Mat. Res. Bull., 27 327 (1992).
    (3)B. Garcia, J. Farcy, J. P. Pereira-Ramos, N. Baffier, J. Electrochem. Soc. 144 1179 (1997)
    (4)L. D. Dyer, B. S. Borie, G. P. Smith, J. Am. Chem. Soc., 78 1499 (1954).
    (5)J. B. Goodenough, D. G. Wickham, W. J. Croft, J. Appl. Phys., 29 380 (1958).
    (6)Rougier, P. Gravereau, C. Delmas, J. Electrochem. Soc., 143 1168 (1996).
    (7)T. Ohzuku, A. Ueda,M. Nagayama, J. Electrochem. Soc., 140 1862 (1993).
    (8)C. Delmas, I. Saadoune, Solid State Ionics, 53 370 (1992).
    (9)C. Delmas, I. Saadoune, A. Rougier, J. Power Sources, 43 595 (1993).
    (10)J. Cho, G. Kim, H. S. Lim, J. Electrochem. Soc., 146 3571 (1999).
    (11)D. Caurant, N. Baffier, B. Garcia, J. P. Pereira-Ramos, Solid State Ionics, 91 45 (1996).
    (12)R. J. Gummow, M. M. Thackeray, Solid State Ionics, 53 681 (1992).
    (13)R. Stoyanova, E. Zhecheva, L. Zarkova, Solid State Ionics, 73 233 (1994).
    (14)E. Zhecheva, R. Stoyanova, Solid State Ionics, 66 143 (1993).
    (15)B. Banov, J. Bourilkov, M. Mladenov, J. Power Sources, 54 268 (1995).
    (16)Z. Liu, A. Yu, J. Lee, J. Power Sources, 81 416 (1999).
    (17)M. Yoshio, H. Noguchi, J. I. Itoh, M. Okada, T. Mouri, J. Power Sources, 90 176 (2000).
    (18)B. J. Hwang, Y. W. Tsai, C. H. Chen, R. Santhanam, J. Mater. Chem., 13 1962 (2003).
    (19)T. Ohzuku, Y. Makimura, Chem. Lett., 642 (2001).
    (20)B. J.Hwang, Y. W. Tsai, D. Carlier, G. Ceder, Chem. Mater., 15 3676 (2003).
    (21)Z. H. Lu, D. D. MacNeil, J. R. Dahn, Electrochem. Solid State Lett., 4 A200 (2001).
    (22)S. Jouanneau, K. W. Eberman, L. J. Krause, J. R. Dahn, J. Electrochem. Soc., 150 A1637 (2003).
    (23)Y. Shao-Horn, S. A. Hackney, A. R. Armstrong, P. G.Bruce, Gitzendanner, R.; Johnson, C. S., Thackeray, M. M., J. Electrochem. Soc., 146 2404 (1999).
    (24)K. Numata, C. Sakaki, S. Yamanaka., Solid State Ionics, 117 257 (1999).
    (25)Z. H.Lu, J. R. Dahn, J. Electrochem. Soc., 149 A815 (2002).
    (26)Z. H.Lu, L. Y. Beaulieu, R. A. Donaberger, C. L. Thomas, J. R. Dahn, , J. Electrochem. Soc., 149 A778 (2002).
    (27)M. M.Thackeray, P. J. Johnson, L. A. D. Picciotto, P. G. Bruce, J. B. Goodenough, Mat. Res. Bull., 19 179 (1984).
    (28)M. M.Thackeray, E. I. F. David, P. G. Bruce, J. B. Goodenough, Mat. Res. Bull., 18 461 (1983).
    (29)R. J.Gummow, A. d. Kock, M. M. Thackerat, Solid State Ionics, 69 59 (1994).
    (30)J.O. Besenhard, “ Handbook of Battery Materials”, Wiley-vch, p.293
    (31)M. M.Thackeray, The Electrochemical Society Proceedings, 94-28 233.
    (32)R. Bittihn, R. Herr, D. Hoge, J. Power Sources, 43 223 (1993).
    (33)M. S. Whittingham, R. Chen, T. Chirayil, P. Zavalij, Solid State Ionics, 94 227 (1997).
    (34)D. Rahner, S. Machill, H. Schreiber, K. Siury, M. Klob, W. Plieth, Solid State Ionics, 86 891 (1996).
    (35)G. A. Nazri, J. M. Trasscon, M. Schreiber, Mat. Res. Soc. Symp. Proc., 3 369 (1994).
    (36)J. Baker, R. Pynenburg, R. Koksbang, J. Power Sources, 52 184 (1994).
    (37)G. T. K. Fey, W. Li, J. R. Dahn, J. Electrochem. Soc., 141 2279 (1994).
    (38)C. Sigala, D. guymard, A. Verbaere, Y. Piffard, M. Tournoun, Solid State Ionics, 81 167 (1995).
    (39)Y. E. Eli, W. F. Howard, J. Electrochem. Soc., 144 L205 (1997).
    (40)N. Li, D. T. Mitchell, K. P. Lee, C. R. Martin, J. Electrochem. Soc., 150 A979 (2003).
    (41)Q. Wang, L. Liu, L. Chen, X. Huang, J. Electrochem. Soc., 151 A1333 (2004).
    (42)G. Martin, Ch. Bousquet, F. Henn, P. Bernier, R. Almairac, B. Simon, Solid State Ionics, 136 1295 (2000).
    (43)Z. H. Yang, H. Q. Wu, Solid State Ionics, 143 173 (2001).
    (44)M. Winter, J. O. Besenhard, Electrochem. Acta, 45 31 (1999).
    (45)J. Yin, M.i Wada, S. Tanase, T. Sakaia, J. Electrochem. Soc., 151 A583 (2004).
    (46)B. Veeraraghavan, A. Durairajan, B. Haran, B. Popov, R. Guidotti, J. Electrochem. Soc., 149 A675 (2002).
    (47)P. Poizot, S. Laruelle, S. Grugeon, L. Dupont. J-M. Tarascon, Nature, 407 496 (2000).
    (48)G. X. Wang, L. Sun, D. H. Bradhurst, s. Zhong, S. X. Dou, H. K. Liu, J. Alloys and Compouds, 306 249 (2000).
    (49)S. M. Hwang, H. Y. Lee, S. W. Jang, S. M. Lee, S. J. Lee, H. K. Baik, J. Y. Lee, Electrochem. Solid State Lett., 4 A97 (2001).
    (50)X. wu, Z. Wang, L. Chen, X. Huang, Eectrochem. Comm., 5 935 (2003).
    (51)W. R. Liu, Z. Z. Guo, W. S. Young, D. T. Shieh, H. C. Wu, M. H. Yang, N. L. Wu, J. Power Sources, 140 139 (2005).
    (52)J. Xie, G. S. Cao, x. B. Zhao, Mater. Chem. Phys., 88 295 (2004).
    (53)J. Niu, J. Y. Lee, Electrochem. Solid-State Lett., 5 A107 (2002).
    (54)N. Dimov, S. Kugino, M. Yoshio, J. Power Sources, 136 108 (2004).
    (55)M. Winter, J. O. Besenhard, M. E. Spahar and P. Novak, Adv. Mater., 10 725 (1998).
    (56)Y. Ein-Eli, W. F. Howard Jr S. H. Lu, S. Mukerjee, J. McBreen, J. T. Vaughey and M. M. Thackeray, J. Electrochem. Soc., 145 1238 (1998).
    (57)T. Ohzuku, K. Ariyoshi, S. Takeda and Y. Sakai, Electrochem. Acta, 462 327 (2001).
    (58)P. V. Wright, D. E. Feton, J. M. Parke, Polymer, 14 589 (1973).
    (59)C. Berthier, W. Gorecki, M. Minier, M. B. Armand, J. M. Chabagno, Solid State Ionics, 11 91 (1983).
    (60)D. F. Shriver, M. A. Ratner, Chem. Rev., 4 254 (1988).
    (61)F. Croe, g. B. Appetcchi, L. Persi, B. Scrosati, Nature, 394 456 (1998).
    (62)W. Wieczorek, J. R. Stevens, Z. Florjanczyk, Solid State Ionics, 85 67 (1996).
    (63)C. M. Nilson, T. J. Bonagamba, M. A. Aegerter, Macromolecules, 33 1280 (2000).
    (64)H. S. Choe, B. G. Carroll, D. M. Pasquariello, K. M. Abraham, Chem. Mater., 9 369 (1997).
    (65)D. Ostrovskii, L. M. Torell, G. B. Appetecchi, B. Scrosati, Solis State Ionics, 106 19 (1998).
    (66)G. B. Appetecchi, F. Croe, B. Scrosati, J. Power Sources, 66 77 (1997).
    (67)H. Y. Sung, Y. Y. Wang, C. C. Wan, J. Electrochem. Soc., 145 1207 (1998).
    (68)G. Venugopal, V. R. Reicher, J. Zhang, US Patent 5,549,987.27 1996.
    (69)F. Croe, g. B. Appetcchi, S. Slane, M. Salomon, M. Tavarez, S. Arumugam, Y. Wang, S. G. Greenbaum, Solid State Ionics, 86 307 (1996).
    (70)A. K. Padhi, K. S. Nanjundaswamy, J. B. Goodenough, J. Electrochem. Soc., 144 1188 (1997).
    (71)N. Raver, Y. Chouinard, J. F.Magnan, S. Besner, M. Gauthier, M. Armand, J. Power Source, 97 503 (2001).
    (72)F. Zhou, C. A. Marianetti, M. Cococcioni, D. Morgan, G. Ceder, Phys. Rev. B, 69 201101 (2004).
    (73)Ping Tang, N. A. W. Holzwarth, Phys. Rev. B, 68, 165107 (2003).
    (74)D. Morgan, A. Van der Ven, G. Ceder, Electrochem. Solid-State Lett., 7 A30 (2004).
    (75)C. Ouyang, S. Shi, Z. Wang, X. Huang, L. Chen, Phys. Rev. B, 69 104303 (2004).
    (76)S. Yang, P. Y. Zavalij, M. S. Whittingham, Electrochem. Comm., 3 505 (2001).
    (77)A. Yamada, K. Yoshihiro, K. Y. Liu, J. Electrochem. Soc., 148 A1153 (2001)
    (78)F. Croce, A. D. Epifanio, J. Hassoun, A. Deptula, T. Olczac, B. Scrosati, Electrochem. Solid-State Lett., 5 A47 (2002).
    (79).S. Y. Chung, J. Bloking, Y. M. Chiang, Nature Mater., 1 123(2002).
    (80)A. Yamada, S.C. Chung, K. Hinokuma, J. Electrochem. Soc., 148, A224 (2001).
    (81)H. Huang, S.-C. Yin, L. F. Nazar, Electrochem. Solid-State Lett., 4 A170 (2001).
    (82)Z. Chen,J. R. Dahn, J. Electrochem. Soc., 149 A1184 (2002).
    (83)P. P. Prosini, D. Zane, M. Pasquali, Electrochem. Acta, 46 3517 (2001).
    (84)M. Herstedt, M. Stjerndahl, A. Nytén, T. Gustafsson, H. Rensmo, H. Siegbahn, N.e Ravet, M. Armand, J. O. Thomas, K. Edström, Electrochem. Solid-State Lett., 6 A202 (2003).
    (85)Deyu Wang, Xiaodong Wu, Zhaoxiang Wang, Liquan Chen, J. Power Sources, 140 125 (2005)
    (86)J. Yang, J. John Xu, Electrochem. Solid-State Lett., 7 A515 (2004).
    (87)R. Dominko, M. Bele, M. Gaberscek, M. Remskar, D. Hanzel, S. Pejovnik, J. Jamnik, J. Electrochem. Soc., 152 A607 (2005).
    (88)R. Dominko, J. M. Goupil, M. Bele, M. Gaberscek, M. Remskar, D. Hanzel, J. Jamnik, J. Electrochem. Soc., 152 A858 (2005).
    (89)G. Arnold, J. Garche, R. Hemmer, S. Ströbele,C. Vogler, M. Wohlfahrt-Mehrens, J. Power Sources, 119 247 (2003).
    (90)K.S. Park, J.T. Son, H.T. Chung, S.J. Kim, C.H. Lee, H.G. Kim, Electrochem. Comm., 5 839 (2003).
    (91)P. P. Prosini, M. Lisi, S. Scaccia, M. Carewska, F. Cardellini, M. Pasquali, J. Electrochem. Soc., 149 A297 (2002).
    (92)T. H. Cho, H. T. Chung, J. Power Sources, 133 272 (2004).
    (93)B. D. Cullity and S. R. Stock, Elements of X-Ray Diffraction, Prentice Hall Publishers, New Jersey, USA, 2001, 3rd edn., ch. 5.2.
    (94)McMillan and Hofmeister, Mineral Soc. Amer., 14 9 (1988)
    (95)A. Fadini, F. M. Schnepal, Viration Spectroscopy- Method and Applications, Eill Horwood Limited. England,1989
    (96)李志甫,X光吸收光譜術操作說明書,同步輻射中心,新竹,台灣 (1997)
    (97)陳錦明,科儀新知,82, 50 (1994)
    (98)許益瑞、劉如熹、陳錦明,科儀新知,120, 12 (2001)
    (99)李志甫,化學,53, 280 (1995)
    (100)Bianconi, A. X-ray Absorption: Principles, Applications, Techniques of EXAFS, SEXAFS and XANES, ed. by D. C. Koningsberger and R. Prins, New York: John Wiley & Sons, 573 (1988)
    (101)Stern, E. A. X-ray Absorption: Principle, Applications, Techniques of EXAFS, SEXAFS and XANES, ed. by D. C. Koningsberger and R. Prins, New York: John Wiley & Sons, 3 (1988)
    (102)Fujikawa, T, Y. X-ray Absorption Fine Structure for Catalysts and Surfaces, ed. by Y. Iwasaawa, WorldScientific, Singapore, 60 (1996)
    (103)Newville, M. AUTOBK document (1995)
    (104)Newville, M. FEFFIT document (1996)
    (105)Ravel, B. ATOMS document (1995)
    (106)Ankoudinov, A. FEFF6 document (1996)
    (107)A. K. Paclhi, K. Nanjunclaswamy, C. Masquelier, Okada, J. B. Gooclenough, J. Electrochem. Soc., 144 1609 (1997).
    (108)S. Franger, F. Le Cras, C. Bourbon, H. Rouault, Electrochem. Solid-State Lett., 5 A231 (2002).
    (109)S. Shi, C. Ouyang, Z. Xiong, L. Liu, Z. Wang, H. Li, D. S. Wang, L. Chen, X. Huang, Phys. Rev. B 71, 144404 (2005)
    (110)Anna S. Andersson , Beata Kalska , Lennart Haggstrom , John O. Thomas, Solid State Ionics, 130 41 (2000).
    (111)M. Takahashi, S. Tobishima, K. Takei, Y. Sakurai, J. Power Sources, 97 508 (2001)
    (112)G. Li, H. Azuma, M. Tohda, J. Electrochem. Soc., 149 A743 (2002)
    (113)O. Garcı´a-Moreno, M. Alvarez-Vega, F. Garcı´a-Alvarado, J. Garcı´a-Jaca, J. M. Gallardo-Amores, M. L. Sanjua´n, U. Amador, Chem. Mater., 13, 1570 (2001).
    (114)H. Tasi and D.B. Bogy, J. Vac Sci. Technol., A5, 3287 (1987)
    (115)D.S. Knight, W.B. White, J. Mater. Res., 4 385 (1989)
    (116)W. L. Wang, M. C. Polo, G. Snachez, J. Cifre, J. Esteve, J. Appl. Phys., 80 123 (1846)
    (117)X. Z. Liao, R. J. Zhang, C. S. Lee, S. Tong Lee, Y. W. Lam, Diamond relat. Mater., 6 521 (1997)
    (118)T. M. Wang, W. J. Wang, B. L. Chen, Phy. Rev. B, 50 5587 (1994)
    (119)D. Beeman, J. Silverman, R. Lynds, and M. R. Anderson, Phys. Rev. B, 30 870 (1984)
    (120)M. Yoshikawa, G. Katagiri, H. Ishida, A. Ishitani, J. Appl. Phys. 64 6464 (1988).
    (121)Z. Sun, X. Shi, X. Wang , Y. Sun, Diamond Relat. Mater., 8 1107 (1999).
    (122)H. Hiura, T. W. Ebbesen, K. Tanigaki , H. Takahashi, Chem. Phys. Lett., 202 509 (1993).
    (123)M. Doeff Marca, Y. Hu, F. McLarnon, R. Kostecki, Electrochem. Solid State Lett., 6 A207 (2003).
    (124)A. S. Andersson, J. O. Thomas, J. Power Sources, 97-98 498 (2001)
    (125)H. S. Kim, B. W. Cho, W. I. Cho, J. Power Sources, 132 235 (2004)
    (126)S. Yang, Y. Song, K. Ngala, P. Y. Zavalij, J. Power Sources, 119-121 239 (2003).
    (127)O. Haas, A. Dwb, E. J. Cairns, A. Wokaunmm J. Electrochem. Soc,152 A191 (2005)
    (128)A. Deb, U. Bergmann, E. J. Cairns, S. P. Cramer, J. Phys. Chem. B, 108 7046 (2004)
    (129)G. Rousse, J. Rodriguez-Carvajal, S. Patoux, C. Masquelier, Chem. Mater., 15 4082 (2003)
    (130)V. A. Streltsov, E. L. Belokoneva, V. G. Tsirelson, N.K Hansen, Acta Crystallogr., B49 147 (1993)
    (131)A. Losey, J. Rakovan, J. M. Hughes, C. A. Francis, M. D. Dyar, The Canadian Mineralogist, 42 1105 (2004)
    (132)P. Prosini, M. Lisi, D. Zane, and M. Pasquali, Solid State Ionics, 148, 45 (2002)
    (133)A. S. Andersson, J. O. Thomas, B. Kalska, L. Häggströmb, Electrochem. Solid-State Lett., 3 66 (2000).
    (134)Y. N. Xu, W. Y. Ching, Y. M. Chiang, J.Appl. Phys., 95 6583 (2004)
    (135)J. Barker, M. Y. Saidi, J. L. Swoyer, Electrochem. Solid-State Lett., 6, A53 (2003)
    (136)K. F. Hsu, S. Y. Tsay, B. J. Hwang, J. Power Sources, in press
    (137)R. Dominko, M. Gaberscek, J. Drofenik, M. Bele, S. Pejovnik, J. Jamnik, J. Power Sources, 119-121 770 (2003)
    (138)J. Shim, K. A. Striebel, J. Power Sources, 119-121 955 (2003)
    (139)K. Striebel, A. Guerfi, J. Shim, M. Armand, M. Gauthier, K. Zaghib, J. Power Sources, 119-121 951 (2003)
    (140)Y. Hu, M. M. Doeff, R. Kostecki, R. Finones, J .Electrochem. Soc., 151 A1279 (2004).
    (141)K. F. Hsu, S. Y. Tsaya, B. J. Hwang, J. Mater. Chem., 14 2690 (2004).
    (142)M. Takahashi, S. I. Tobishima, K. Takei, Y. Sakurai, Solid State Ionics, 148 283 (2002).
    (143)D. Zane, M. Carewska, S. Scaccia, F. Cardellini, P. P. Prosini, Electrochimica Acta, 49 4259 (2004).
    (144)K. Konnstantinov, S. Bewlay, G. X. Wang, M. Lindsay, J. Z. Wang, H. K. Liu, S. X. Dou, J. H. Ahn, Electrochimica Acta, 50 421 (2004).
    (145)G. X. Wang, S. L. Bewlay, K. Konstantinov, H. K. Liu, S. X. Dou, Electrochimica Acta, 50 443 (2004).
    (146)J. D. Tsay , T. T. Fang, J. Am. Ceram. Soc., 82 1409 (1999)
    (147)Denny A. Jones, Principle and Prevention of Corrosion, Prentic-Hall, Inc., USA, 1992, 2nd edn.

    無法下載圖示 校內:2025-07-27公開
    校外:2030-07-27公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE