簡易檢索 / 詳目顯示

研究生: 宋祥傳
Sung, Xiang-Chuan
論文名稱: 改良二維光子晶體之多通道波長塞取濾波器之傳輸效能
Improved transmission efficiency of two-dimensional photonic crystal-based multi-channel add/drop filters
指導教授: 黃振發
Huang, Jen-Fa
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程研究所
Institute of Electro-Optical Science and Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 53
中文關鍵詞: 波長塞取濾波器光子晶體
外文關鍵詞: photonic crystal, channel add/drop filter
相關次數: 點閱:43下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   使用分波多工 (wavelength-division multiplexing) 之通訊系統能對系統中可利用的頻寬作較有效的運用。由於折射係數呈週期性結構的光子晶體具有光子能隙,頻率落入光子能隙區間中的光會因此而無法在光子晶體中傳遞。我們可利用在光子晶體中置入缺陷結構來控制光傳遞的頻率與方向且利用光子晶體所製作的分波多工元件之體積只需幾個微米的大小等級。因此,這種積體化光子晶體之波長塞取濾波器相當適合用於分波多工之光通訊系統中。

      到目前為止已有許多種通道之波長塞取濾波器被提出。基於容易設計與製作的考量,我們選擇利用直接耦合結構與側邊耦合結構來實現多通道之波長塞取濾波器。爲了改善具備直接耦合結構或側邊耦合結構的多通道波長塞取濾波器的傳輸效能,我們在輸入波導的末端置入一反射器。除此之外,若我們可結合直接耦合結構及側邊耦合結構則多通道波長塞取濾波器幾何型態的調整將變得更有彈性,並且也可以達到更好的傳輸效能。利用有限時域差分法 (finite-difference time-domain method) 可以計算此篇論文中所提出的濾波器之傳輸效能。

     The use of a Wavelength-division multiplexing (WDM) based communication system allows for better utilization of the spectral bandwidth resources available to the system. Photonic crystals exhibit photonic bandgap (PBG) due to the periodic structure of the refractive index and light propagation with a range of frequencies within the PBG is consequently prohibited. In addition, we can control the light propagation both with respect to frequency and direction by introducing defect in photonic crystals and WDM devices based on photonic crystals can be achieved on a much smaller size about several micrometers. Therefore the operations of such ultra-compact photonic crystal-based channel add/drop filter are suitable to be used in WDM optical communication systems.

     UP to present, many kinds of channel add/drop filter have been proposed. For the reason of easily design and fabricate, we chosen direct coupling structure and side coupling structure to realize multi-channel add/drop filter. In order to improve the add/drop efficiency of the multi-channel add/drop filter with direct coupling structure or side coupling structure, we introduced a reflector in the end of the bus waveguide. Moreover, if we combine both direct coupling structure and side coupling structure, tuning the geometrical pattern of multi-channel add/drop filter becomes more flexible and higher add/drop efficiency can be achieved. The transmission efficiency of the proposed filter in this thesis has been calculated using the finite-difference time-domain (FDTD) method.

    Chapter 1. Introduction 1 1.1 History and Literature Review 1 1.2 Motivation 7 1.3 Structure of the Thesis 10 Chapter 2. The Concept and Applications of Photonic Crystals 11 2.1 Photonic Band Structure 12 2.2 Defects 15 2.3 Applications 16 Chapter 3. The Finite-Difference Time-Domain Method 19 3.1 Maxwell’s Equations 19 3.2 Yee’s Algorithm 22 3.3 Finite-Difference Time-Domain Expressions for Maxwell’s Equations 24 3.4 Stability Condition 27 3.5 Perfectly Matched Layer Absorbing Boundary Condition 28 Chapter 4. Theoretical Considerations and Simulation Results of Channel Add/Drop Filters 31 4.1 Theoretical Considerations 31 4.1.1 The Transmission Resonator 31 4.1.2 The Side-Coupled Resonator 34 4.2 Designs and Simulation Results 37 4.2.1 Channel Add/Drop Filter with Side-Coupled Resonators 39 4.2.2 Channel Add/Drop Filter with Transmission Resonators 45 4.2.3 New Structure 47 Chapter 5. Conclusions 50 REFERENCE 51

    [01]. C. Dragone, “Efficient N×N star couplers using Fourier optics,” J. Lightwave Technol., 7, 479-489 (1989).

    [02]. K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection filter fabrication,” Appl. Phys. Lett., 32, 647-649 (1978).

    [03]. H. A. Haus, S. Fan. P. R. Villeneuve, and J. D. Joannopoulos, “Channel drop filters in photonic crystals,” Opt. Express, 3, 4-11 (1998).

    [04]. M. Koshiba, “Wavelength division multiplexing and demultiplexing with photonic crystal waveguide couplers,” J. Lightwave Technol., 19, 1970-1975 (2001).

    [05]. K. Ohtaka, “Energy band of photons and low-energy photon diffraction,” Phys. Rev. Lett., B 19, 5057-5067 (1979).

    [06]. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett., 58, 2059-2062 (1987).

    [07]. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett., 58, 2486-2489 (1987).

    [08]. E. Yablonovitch and T. J. Gmitter, “Photonic band structure: The face-centered-cubic case,” Phys. Rev. Lett., 63, 1950-1953 (1989).

    [09]. K. M. Leung, Y. F. Liu, “Full vector wave calculation of photonic band structures in face-centered-cubic dielectric media,” Phys. Rev. Lett., 65, 2646-2649 (1990).

    [10]. Z. Zhang, S. Satpathy, “Electromagnetic wave propagation in periodic structures: Bloch wave solution of Maxwell's equations,” Phys. Rev. Lett., 65, 2650-2653 (1990).

    [11]. K. M. Ho, C. T. Chang, C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett., 65, 3152-3155 (1990).

    [12]. E. Yablonovitch, T. M. Gmitter, K. M. Leung, “Photonic band structure: The face-centered-cubic case employing nonspherical atoms,” Phys. Rev. Lett., 67, 2295-2298 (1991).

    [13]. K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, M. Sigalas, “Photonic band gaps in three dimensions: New layer-by-layer periodic structures,” Solid State Commun., 89, 413-416 (1994).

    [14]. A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett., 77, 3787-3790 (1996).

    [15]. S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by single defect in a photonic bandgap structure” Nature, 407, 608-610 (2000).

    [16]. M. L. Povinelli, S. G. Johnson, J. Fan, and J. D. Joannopoulos, “Emulation of two-dimensional photonic crystal defect modes in a photonic crystal with a three-dimensional photonic band gap,” Phys. Rev. Lett., B 64, 753131-753138 (2001).

    [17]. B. S. Song, T. Asano, Y. Akahane, Y. Tanaka, and S. Noda, “Multichannel add/drop filter based on in-plane hetero photonic crystals,” J. Lightwave Technol., 23, 1449-1455 (2005).

    [18]. S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “Channel drop tunneling through localized states,” Phys. Rev. Lett., 80, 960-963 (1998).

    [19]. H. A. Haus, “Waves and Field in Optoelectronic,” Prentice-Hall (1984).

    [20] J. D. Joannopoulos, R. D. Meade, J. N. Winn, “Photonic crystals: molding the flow of light,” Princeton University Press (1995).

    [21]. M. Ibanescu, Y. Fink, S. Fan, E. L. Thomas, and J. D. Joannopoulos, “An all-dielectric coaxial waveguide,” Science, 289, 415-419 (2000).

    [22]. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science, 285, 1537-1539 (1999).

    [23]. K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Transactions on Antennas and Propagation, 14, 302-307 (1996).

    [24]. J. P. Berenger, “A perfectly matched layer fot the absorption of electromagnetic waves,” Journal of computational physics, 114, 185-200 (1994).

    [25]. H. A. Haus, “Theory of cascaded quarter wave shifted distributed feedback resonators,” Journal of Quantum Electronics, 28, 205-213 (1992).

    無法下載圖示 校內:2010-07-15公開
    校外:2104-07-15公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE