簡易檢索 / 詳目顯示

研究生: 李昂宸
Lee, Ang-Chen
論文名稱: 毫米波CMOS壓控振盪器及低功耗多模態微波注入鎖定除頻器晶片研製
Research on Millimeter-Wave CMOS Voltage Controlled Oscillators and Low Power Multi-Modulus Microwave Injection-Locked Frequency Divider
指導教授: 莊惠如
Chuang, Huey-Ru
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 100
中文關鍵詞: 毫米波CMOS壓控振盪器微波注入鎖定除頻器
外文關鍵詞: Millimeter-wave, CMOS, voltage controlled oscillator (VCO), injection-locked frequency divider (ILFD)
相關次數: 點閱:138下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要研製30-與47-GHz之低相位雜訊及低功耗壓控振盪器,以及2.4-GHz低功耗多模態微波注入鎖定除頻器。30-與47-GHz變壓器回授壓控振盪器皆採用TSMC CMOS 90-nm GUTM製程設計實現,變壓器回授技巧可使振盪器的輸出擺幅提升,且當變壓器的匝數為耦合係數兩倍時,負載Q值可最佳化,因此振盪器可在低電壓及低功率消耗操作下,有不錯的相位雜訊及輸出功率,此外利用MIM電容與可變電容並聯,改善可變電容操作於毫米波Q值較差之問題,以提升整體共振腔Q值,達成較佳的相位雜訊。2.4-GHz低功耗多模態微波注入鎖定除頻器採用TSMC CMOS 0.18-um製程設計,使用電流再利用式的架構作為電路核心,因此能有效減少直流功率消耗,而透過交互耦合的注入技巧可增強振盪器之諧波特性表現,使除頻器完成除二、除三及除四之功能,另外具有單端注入方式及注入電晶體無功率消耗之優點。電路設計使用Agilent ADS進行模擬,走線效應則以三維全波有限元素法進行模擬。晶片採用fully on-wafer與on wafer circuit with PCB bias network的方式進行量測。

    This thesis presents the design of millimeter-wave CMOS voltage controlled oscillators (VCOs) and low power multi-modulus microwave injection-locked frequency divider (ILFD), implemented by standard TSMC 0.18-um or TSMC 90-nm GUTM CMOS process. In the 30-GHz VCO design, the transformer-feedback technique is adopted to optimize loaded quality factor of VCO and improve the phase noise performance. In the 47-GHz VCO design, the transformor-feedback technique is adopted for better star-up condition and good loaded quality factor of VCO at high frequency design. In the multi-modulus ILFD, the current-reused cross-coupled pair structure is adopted for low power consumption. The injection-switched cross-coupled pair technique enables this divider to operate in divide-by-2, -3, and -4 modes and wide locking range. The simulated and measured results of the designed RFICs are compared and discussed in this thesis.

    第一章 緒論 1 1.1 研究動機與背景 1 1.2 文獻回顧 3 1.3 論文架構 4 第二章 毫米波CMOS變壓器回授式壓控振盪器 5 2.1 CMOS振盪器簡介 5 2.2 壓控振盪器之重要參數 6 2.3 毫米波壓控振盪器之設計挑戰 8 2.3.1 電晶體的可用功率增益及negative gm[36][37] 9 2.3.2 可變電容的品質因素與可調範圍[38] 9 2.4 低功耗壓控振盪器 11 2.4.1 電流再利用(current-reused)式壓控振盪器[14] 11 2.4.2 負電導提升(negative-conductance boosted)技巧之壓控振盪器[15] 12 2.4.3 變壓器回授(transformer-feedback)式壓控振盪器[17] 15 2.5 30-GHz CMOS變壓器回授壓控振盪器設計 16 2.5.1 電路設計分析與考量 17 2.5.2 設計流程總結 23 2.5.3 模擬與量測結果 26 2.5.4 結果與討論 29 2.6 47-GHz CMOS變壓器回授壓控振盪器設計 32 2.6.1 47-GHz CMOS變壓器回授壓控振盪器簡介 32 2.6.2 電路設計分析與考量 33 2.6.3 設計流程總結 36 2.6.4 模擬與量測結果 39 2.6.5 結果與討論 42 第三章 低功耗多模態微波注入鎖定除頻器 45 3.1 多頻段輸出之鎖相迴路系統簡介 45 3.2 除頻器之重要參數 46 3.3 CMOS 注入鎖定除頻器架構簡介 47 3.3.1 注入鎖定除二除頻器 48 3.3.2 注入鎖定除三除頻器 53 3.3.3 多模態操作注入鎖定除頻器 58 3.4 低功耗、多模態操作之微波注入鎖定除頻器設計 59 3.4.1 多模態操作除頻器架構說明 59 3.4.2 多模態除頻器模型 61 3.4.3 電路設計分析與考量 61 3.4.4 設計流程總結 65 3.4.5 模擬與量測結果 68 3.4.6 結果與討論 74 第四章 結論 81 參考文獻 83 附錄A 供應電壓之雜訊對壓控振盪器的相位雜訊影響 89 A.1 相位雜訊量測方式 89 A.2 旁通電容對相位雜訊的改善 91 附錄B 雙端注入鎖定除頻器原理與分析[30][68] 93 附錄C 交互耦合注入技巧之鎖定範圍分析[34] 97 C.1 振盪頻率與起振條件 99 C.2 共振腔品質因素 100

    [1] H.-C. Kuo, H.-H. Wang, H.-L. Yue, Y.-W. Ou, C.-C. Lin, H.-R. Chuang, and T.-H. Huang, “A 60-GHz fully integrated CMOS sub-harmonic RF receiver with MM-wave on-chip AMC-antenna/balun-filter and on-wafer wireless transmission test,” in IEEE MTT-S Int. Microw. Symp. Dig., 2012, Montreal, Canada.
    [2] RF Globalnet. [Online]. Available:
    http://www.rfglobalnet.com/doc.mvc/Fixed-Wireless-Communications-at-60GHz-Unique-0001
    [3] Ekaterina Laskin, Mehdi Khanpour, Sean T. Nicolson, Alexander Tomkins, Patrice Garcia, Andreia Cathelin, Member, Didier Belot, and Sorin P. Voinigescu, “Nanoscale CMOS transceiver design in the 90–170-GHz range,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 12, pp. 3477–3490, Dec. 2009.
    [4] S. T. Nicolcon, A. Tomkins, K. W. Tang, A. Cathelin, D. Belot, S. P. Voinigescu, “A 1.2 V, 140 GHz receiver with on-die antenna in 65 nm CMOS,” in IEEE RFIC Symp. Dig., pp.229-232, Jun.2008.
    [5] S.S. Ahmed, A. Schiessl, F. Gumbmann, M. Tiebout, S. Methfessel, and L. Schmidt, “Advanced microwave imaging,” IEEE Microwave Magazine, vol. 13, no. 6, pp. 26-43, Sep. 2012.
    [6] Medical Devices Meet Consumer Electronics. [Online].Available:
    http://www.asianhhm.com/technology-equipment/medical-devices-meet-consumer-electronics
    [7] IEEE 802.15 Working Group for WPAN. [Online]. Available:
    http://www.ieee802.org/15
    [8] A. Arbabian, S. Callender, S. Kang, M. Rangwala, and A. Niknejad, “A 94 GHz mm-wave-to-baseband pulsed-radar transceiver with applications in imaging and gesture recognition” IEEE J. Solid-State Circuit, vol. 48, no. 4, pp. 1055-1071, Apr. 2013.
    [9] A. Arbabian, S. Callender, S. Kang, B. Afshar, J.-C. Chien, and A. Niknejad, “A 90 GHz hybrid switching pulsed-transmitter for medical imaging,” IEEE J. Solid-State Circuits, vol. 45, no. 12, pp. 2667–2681, Dec. 2010.
    [10] A. Arbabian, B. Afshar, J.-C. Chien, S. Kang, S. Callender, E. Adabi, S. Toso, R. Pilard, D. Gloria, and A. Niknejad, “A 90 GHz-carrier 30 GHz-bandwidth hybrid switching transmitter with integrated antenna,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, 2010, pp. 420–421.
    [11] A. Arbabian, S. Kang, S. Callender, B. Afshar, J.-C. Chien, and A. Niknejad, “A 90 GHz pulsed-transmitter with near-field/far-field energy cancellation using a dual-loop antenna,” in Proc. IEEE Radio Frequency Integrated Circuits (RFIC) Symp., 2011.
    [12] F. Cannone, G. Avitabile, G. Coviello and D. Cascella, “Multi-band quadrature generator based on the virtual LO phase shifting technique, ” 2010 53rd IEEE International Midwest Symposium on Circuits and Systems, 2010, pp. 957-960.
    [13] H.-K. Chen, T. Wang, and S.-S. Lu, “A millimeter-wave CMOS triple-band phase-locked loop with a multimode LC-based ILFD,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 5, pp. 1327-1338, May 2011.
    [14] S.-J. Yun, S.-B. Shin, H.-C. Choi, and S.-G. Lee, “A 1 mW current-reuse CMOS differential LC-VCO with low phase noise,” in IEEE Int. Solid-State Circuits Conf. Tech. Dig., Feb. 2005, pp. 540-616.
    [15] T.-P. Wang, “A CMOS Colpitts VCO using negative-conductance boosted technology,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 58, no. 11, pp. 2623-2635, Nov. 2011.
    [16] T.-P. Wang and S.-Y. Wang, “Frequency-tuning negative-conductance boosted structure and applications for low-voltage low-power wide-tuning-range VCO,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 23, no. 6, pp. 1137-1144, June 2015.
    [17] K. -C. Kwok and H. C. Luong, “Ultra-low-voltage high-performance CMOS VCOs using transformer feedback,” IEEE J. Solid-State Circuits, vol. 40, no. 3, pp. 652–660, Mar. 2005.
    [18] H. R. Rategh and T. H. Lee, “Superharmonic injection-locked frequency dividers,” IEEE J. Solid-State Circuits, vol. 34, no. 6, pp. 813–821, Jun. 1999.
    [19] H. Wu and A. Hajimiri, “A 19 GHz 0.5 mW 0.35 μm CMOS frequency divider with shunt-peaking locking-range enhancement,” in IEEE Int. Solid-State Circuits Conf. Tech. Dig., Feb. 2001, pp. 412-413, 471.
    [20] M. Tiebout, “A CMOS direct injection-locked oscillator topology as high-frequency low-power frequency divider,” IEEE J. Solid-State Circuits, vol. 39, no. 7, pp. 1170–1174, Jul. 2004.
    [21] K. Yamamoto and M. Fujishima, “55 GHz CMOS frequency divider with 3.2 GHz locking range,” in Proc. Eur. Solid-State Circuits Conf., Sep. 2004, pp. 135-138.
    [22] J.-C. Chien and L.-H. Lu, “40 GHz wide-locking-range regenerative frequency divider and low-phase-noise balanced VCO in 0.18 μm CMOS,” in IEEE Int. Solid-State Circuits Conf. Tech. Dig., Feb. 2007, pp. 544-621.
    [23] Y.-H. Wong, W.-H. Lin, J.-H. Tsai, and T.-W. Huang, “A 50-to-62 GHz wide-locking-range CMOS injection-locked frequency divider with transformer feedback,” in IEEE RFIC Symp. Dig., Apr. 2008, pp.435-438.
    [24] C.-C. Chen, H.-W. Tsao, and H. Wang, “Design and analysis of CMOS frequency dividers with wide input locking ranges,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 12, pp. 3060-3069, Dec. 2009.
    [25] K.-H. Chien, J.-W. Chen, and H.-K. Chiou, “Designs of K-Band divide-by-2 and divide-by-3 injection-locked frequency divider with Darlington topology,” IEEE Trans. Microw. Theory Tech., vol. 63, no. 9, pp. 2877-2888, Sep. 2015.
    [26] S.-W. Chu and C.-K. Wang, “An 85-GHz injection-locked frequency divider with current-reuse pre-amplifier technique,” IEEE Asian Solid-State Circuits Conf., Nov. 2011.
    [27] 朱書緯,應用於79-GHz FMCW短距離車用雷達系統之注入鎖定除頻器與電壓控制振盪器設計,國立臺灣大學電機資訊學院電信工程學研究所碩士論文,民國一百零一年。
    [28] H. Wu and L. Zhang, “A 16-to-18 GHz 0.18 μm Epi-CMOS divide-by-3 injection-locked frequency divider,” in IEEE Int. Solid-State Circuits Conf. Tech. Dig., Feb. 2006, pp. 2482-2491.
    [29] C.-H. Wang, C.-C. Chen, M.-F. Lei, M.-C. Chuang, and H. Wang, “A 66-72 GHz divide-by-3 injection-locked frequency divider in 0.13 μm CMOS technology,” in IEEE Asian Solid-State Circuits Conf., Nov. 2007, pp. 344-347.
    [30] S.-L. Jang, C.-W. Tai, and C.-F. Lee, “Divide-by-3 injection-locked frequency divider implemented with active inductor,” IEEE Microw. Opt. Technol. Lett., vol. 50, no. 6, pp. 1682-1685, Jun. 2008.
    [31] Y.-T. Chen, M.-W. Li, H.-C. Kuo, T.-H. Huang, and H.-R. Chuang, “Low-voltage, K-band divide-by-three injection-locked frequency divider with floating-source differential injector,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 1, pp. 60–67, Jan. 2012.
    [32] P.-H. Feng and S.-I. Liu, “Divide-by-three injection-locked frequency dividers over 200 GHz in 40-nm CMOS,” IEEE J. Solid-State Circuits, vol. 39, no. 7, pp. 1170–1174, Jul. 2013.
    [33] 張勝良, 洪佳楠, 劉政辰。 2011。使用交錯耦合切換電晶體之注入鎖定除頻/倍頻器。中華民國發明專利第I411221號。
    [34] B.-E. Seow, T.-H. Huang, C.-Y. Wu, P.-Y. Pao, and H.-R. Chuang, “A low-voltage 30-GHz CMOS divide-by-three ILFD with injection-switched cross-coupled pair technique,” IEEE Trans. Microw. Theory Techn., vol. 65, no. 5, pp. 1560-1568, May 2017.
    [35] 朱元凱,應用於802.11a WLAN之5GHz U-NII頻帶降頻器CMOS RFIC,國立成功大學電腦與通信工程研究所碩士論文,民國九十一年。
    [36] L. Li, P. Reynaert, and M. Steyaert, “Design and analysis of a 90 nm mm-wave oscillator using inductive-division LC tank,” IEEE J. Solid-State Circuits, vol. 44, no. 7, pp. 1950–1958, Jul. 2009.
    [37] L. Li, P. Reynaert, and M. Steyaert, “A 60-GHz CMOS VCO using capacitance- splitting and gate-drain impedance-balancing techniques,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 2, pp. 406-413, Feb. 2011.
    [38] C. Cao and K. K. O, “Millimeter-wave voltage-controlled oscillators in 0.13-um CMOS Technology,” IEEE J. Solid-State Circuits, vol. 41, no. 6, pp. 1297-1304, Jun. 2006.
    [39] 邱垣達,低功耗低相位雜訊差動及四相位單晶微波積體電路壓控振盪器之研究,國立中央大學電機工程研究所碩士論文,民國一百年。
    [40] D. D. Kim, H. Wohlmuth, and W. Simburger, “A 70 GHz manufacturable complementary LC-VCO with 6.14 GHz tuning range in 65 nm SOI CMOS,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, 2007, pp. 540–541.
    [41] C.-L. Yang and Y.-C. Chiang, “Low phase-noise and low-power CMOS VCO contructed in current-reused configuration,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 2, pp. 136-138, Feb. 2008.
    [42] S.-L. Jang, C.-C. Liu, C.-Y. Wu, and M.-H. Juang, “A 5.6 GHz low power balanced VCO in 0.18 μm CMOS,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 4, pp. 233-235, Apr. 2009.
    [43] M.-D. Wei, S.-F. Chang, and S.-W. Huang, “An amplitude-balanced current-reused CMOS VCO using spontaneous transconductance match technique,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 6, pp. 395-397, Jun. 2009.
    [44] C. K. Hsieh, K. Y. Kao, and K. Y. Lin, “An ultra-low-power CMOS complementary VCO using three coil transformer feedback,” in IEEE RFIC Symp. Dig., Jun. 2009, pp.91-94.
    [45] H. -Y Chang and Y. -T Chiu, “K-band CMOS differential and quadrature voltage-controlled oscillators for low phase-noise and low-power applications,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 1, pp. 46-59, Jan. 2012.
    [46] J. R. Long, “Monolithic transformers for silicon RF IC design,” IEEE J. Solid-State Circuits, vol. 35, no. 9, pp. 1368–1382, Sep. 2000.
    [47] T.-Y. Lian, K.-H.Chien, H.-K. Chiou, “An improved Gm-boosted technique for a K-band cascode Colpitts CMOS VCO,” in Proc. IEEE Asia-Pacific Microw. Conf., 2013, pp. 685-687.
    [48] Q. Wu, S. Elabd, T. K. Quach, A. Mattamana, S. R. Dooley, J. McCue, P. L. Orlando, G. L. Creech and W. Khalil, “A -189 dBc/Hz FOMT wide tuning range Ka-band VCO using tunable negative capacitance and inductance redistribution,” in IEEE RFIC Symp. Dig., 2013, pp. 199-202.
    [49] S. P. Sah, D. Heo and S. Mirabbasi, “An inductively Gm enhanced 34-GHz VCO with gain linearization and switched transformer tuning,” in IEEE MTT-S Int. Microw. Symp. Dig., 2014, pp. 1-4.
    [50] Z.-Y. Yang and R. Y. Chen, “High-Performance Low-Cost Dual 15 GHz/30 GHz CMOS LC Voltage-Controlled Oscillator,” IEEE Microw. Wireless Compon. Lett., vol. 26, no. 9, pp. 395-397, Sep. 2016.
    [51] N. Kim, Y. Oh, and J. -S. Rieh, “A 47 GHz LC cross-coupled VCO employing high- Q island-gate varactor for phase noise reduction” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 2, pp. 94-96, Feb. 2010.
    [52] N. Nouri and J. F. Buckwalter, “A 45-GHz rotary-wave voltage-controlled oscillator” IEEE Trans. Microw. Theory Tech., vol. 59, no. 2, pp. 383-392, Feb. 2011.
    [53] V. P. Trivedi and K.-H. To, “A novel mmWave CMOS VCO with an AC-coupled LC tank,” in IEEE RFIC Symp. Dig., 2012, pp. 515-518.
    [54] Y.-C. Wang, H.-K. Chiou and K.-H. Chien “A constant output power Q-band VCO with distributed cross-coupled-Gm core and A-mode pMOS varactors,” in Proc. IEEE Asia-Pacific Microw. Conf., 2014, pp. 886-888.
    [55] C. -C Lee, S. -Y Huang and H. -Y Chang “A 44-49 GHz low phase noise CMOS voltage-controlled oscillator with 10-dBm output power and 16.1 % efficiency” in IEEE Int. Microw. Symp. Dig. Papers, Jun. 2014, pp. 1-4.
    [56] B. Razavi, “A study of injection locking and pulling in oscillators,” IEEE J. Solid-State Circuits, vol. 39, no. 9, pp. 1415–1424, Sep. 2004.
    [57] S.-L. Jang, J.-C. Luo, C.-W. Chang, C.-F. Lee, and J.-F. Huang, “LC-Tank colpitts injection-locked frequency divider with even and odd modulo,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 2, Feb. 2009.
    [58] S.-L. Jang, R.-K. Yang, C.-W. Chang, and M.-H. Juang, “Multi-modulus LC injection-locked frequency dividers using single-ended injection,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 5, May. 2009.
    [59] S. Lee, S. Jang, and C. Nguyen, “Low-power-consumption wide-locking-range dual-injection-locked 1/2 divider through simultaneous optimization of VCO loaded Q and current,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 10, pp. 3161-3168, Feb. 2012.
    [60] K.-W. Ha, E.-T. Sung, and D. Baek, “Low-power transformer-based current-reuse injection-locked frequency divider,” Electron. Lett., vol. 51, no. 2, pp. 161-162, Jun. 2015.
    [61] S.-L. Jang, C.-Y. Lin, and M.-H. Jang, ”Enhanced locking range technique for divide-by-3 differential injection-locked frequency divider,” Electron. Lett., vol. 51, no. 6, pp. 456-458, Jun. 2015.
    [62] J.-H. Huang, X.-P. Yu, S.-Y. Xu, J. Jin, and F.-X. Yu, ” 19.1 GHz 18 mW divide-by-3 heterodyne injection locking frequency divider in 0.18 μm CMOS technology,” Electron. Lett., vol. 52, no. 12, pp. 1076-1078, Jun. 2016.
    [63] J.-W. Wu, T.-H. Lin, H.-W. Kao, ” Divide-by-four injection-locked frequency divider by using sub-harmonics mixer,” in IEEE MTT-S Int. Microw. Symp. Dig., 2013.
    [64] K.-H. Tsai, L.-C. Cho, J.-H. Wu, and S.-I. Liu, “3.5 mW W-band frequency divider with wide locking range in 90 nm CMOS technology,” in IEEE Int. Solid-State Circuits Conf. Tech. Dig., Feb. 2008, pp. 466–467.
    [65] T.-N. Luo and Y.-J. E. Chen, “A 0.8-mW 55-GHz dual-injection-locked CMOS frequency divider,” IEEE Trans. Microw. Theory Techn, vol. 56, no. 3, pp. 620–625, Mar. 2008.
    [66] Y.-H. Kuo, J.-H. Tsai, H.-Y. Chang, and T.-W. Huang, “Design and analysis of a 77.3% locking-range divide-by-4 frequency divider,” IEEE Trans. Microw. Theory Techn., vol. 59, no. 10, pp. 2477–2485, Oct. 2011.
    [67] Keysight technologies, E5052B Signal Source Analyzer 10 MHz to 7 GHz, 26.5 GHz, or 110 GHz - Data Sheet, 2016.
    [68] 陳臆聰,24-GHz CMOS壓控振盪器與24-及60-GHz除頻器之研製,國立成功大學電腦與通信工程研究所碩士論文,民國九十八年。

    下載圖示 校內:2022-08-01公開
    校外:2022-08-01公開
    QR CODE