簡易檢索 / 詳目顯示

研究生: 陳宗佑
Chen, Zong-You
論文名稱: 室溫下銣85原子之電磁誘發透明訊號之模擬與研究
Simulation and study of electromagnetically induced transparent signals of rubidium 85 atoms at room temperature
指導教授: 管培辰
Kuan, Pei-Chen
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 75
中文關鍵詞: 電磁誘發透明
外文關鍵詞: Electromagnetically Induced Transparency
相關次數: 點閱:51下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們在常溫下測量銣85電磁誘發透明(EIT)的訊號發現了不尋常的線寬變化,在三能階系統的預測中我們預期看到 EIT 的訊號線寬隨外加耦合光強度增加,為一種線性關係,然而當我們在常溫下用銣85做電磁誘發透明實驗看到的線寬卻隨耦合光強度增加並逐漸趨近飽和。實驗上我們選擇用 Λ 型系統做電磁誘發透明實驗,並猜測有另外一個額外的激發態也參與了交互作用,因此我們在文中建立一個四能階系統擬合這個系統。擬合的結果顯示,相對穿透率與 EIT 峰值中心頻率的偏移皆符合四能階系統預期,只有線寬不符預期,然而在強磁場條件下看到的線寬並無收斂的跡象,推測有額外的效應需要考慮,目前推測這樣的效應可能與拉曼雙光子吸收有關,並嘗試用兩組黎曼系統建模,結果發現線寬隨耦合光強度變化趨緩,但仍呈現性增加的趨勢,推測加入更多黎曼態可以看到預期的收斂效果,之後可以朝這個方向嘗試。

    We have observed unusual linewidth behavior in electromagnetically induced transparency experiments with vapor cell of rubidium 85 atoms at room temperature. In the prediction of a three-level system, we expected to see a linear relation between the EIT linewidth and the applied power of the coupling field. However, in our experiment with vapor cells of rubidium 85 atoms at room temperature, we observed that the linewidth increased with the power of the coupling field and gradually approached saturation. Experimentally, we decided to use a Λ-type system for the EIT experiment. We hypothesized that an additional excited state might also be considered. Therefore, we constructed a four-level system model to fit the data. The fitting result showed that the relative transmission rate and the shift of the central frequency of the EIT peak met the expectations of the four-level system, but the linewidth did not. Under a strong magnetic field, the linewidth showed no sign of convergence, suggesting that additional effects may need to be considered. We currently speculate that this effect may be related to the Raman transition. We attempted to model the system using two sets of Zeeman systems and found that the increase of linewidth gradually slowed down with the change in the strength of the coupling field, but the relation between linewidth and the strength of the coupling field still showed a trend of linear increase. We speculate that adding more Zeeman states could achieve the expected convergence effect.

    中文摘要I Abstract II 致謝 XI 目錄 XII 圖目錄 XIV 第一章 緒論 1 1-1 研究動機 1 1-2 文獻探討 1 1-3 相關應用 3 第二章 電磁誘發透明 4 2-1 電磁誘發透明的基本概念 4 2-2 系統的演化 6 2-3 穿透率 11 2-4 EIT 特性 13 2-5 熱原子 15 2-5.1 Doppler Narrowing 16 2-5.2 Dicke Narrowing 18 2-6 銣85的訊號模擬 20 2-7 四能階銣85的訊號模擬 22 第三章 實驗架設 26 3-1 光路架設 26 3-1.1 雷射輸出訊號的調整 26 3-1.2 探測光訊號 27 3-1.3 耦合光訊號 27 3-1.4 量測方法 27 3-2 磁場屏蔽 30 第四章 實驗結果 31 第五章 結論 42 第六章 建議與未來展望 43 6-1 雙光子拉曼躍遷 43 6-2 光拖曳 51 參考文獻 54

    [1] D. Hockel and O. Benson, Physical Review Letters 105, 153605 (2010).
    [2] P. Goldner, A. Ferrier, and O. Guillot-Noël, Handbook on the Physics and Chemistry of Rare Earths (North Holland, 2015), Volume 46, Page 1-78.
    [3] S. Khan, M. P. Kumar, V. Bharti, and V. Natarajan, The European Physical Journal D 71, 38 (2017).
    [4] J. Keaveney, A. Sargsyan, D. Sarkisyan, A. Papoyan, and C. S. Adams, Journal of Physics B 47, 075002 (2014).
    [5] A. Javan, O. Kocharovskaya, H. Lee, and M. O. Scully, Physical Review A 66, 013805 (2002).
    [6] M. Shuker, O. Firstenberg, R. Pugatch, A. Ben-Kish, A. Ron, and N. Davidson, Physical Review A 76, 023813 (2007).
    [7] G. Wang, Y. S. Wang, E. K. Huang, W. Hung, K. L. Chao, P. Y. Wu, Y. H. Chen, and I. A. Yu, Scientific Reports 8, 7959 (2018).
    [8] 徐皓, 碩士論文, 國立成功大學, 2020.
    [9] M. Fleischhauer, A. Imamoglu, and J. P. Marangos, Reviews of Modern Physics 77 633-673 (2005).
    [10] 陳應誠與余怡德, 物理雙月刊 23, 572-578 (2001).
    [11] B. N. Sanchez and T.Brandes, Annalen der Physik 13, 569-594 (2004).
    [12] V. Srivastava and R. Krishnan, Modern Physics Letters B 16, 511-517 (2002).
    [13] C. O. Reinhold, J. Burgdörfer, and F. B. Dunning, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 233, 48-55 (2005).
    [14] R. Finkelstein, S. Bali, O. Firstenberg, and I. Novikova, New Journal of Physics 25, 035001 (2023).
    [15] S. Khan, V. Bharti, and V. Natarajan, Physics Letters A 380, 4100-4104 (2016).
    [16] I. Dotsenko, Master thesis, Bonn Friedrich-Wilhelms-University, 2002.
    [17] S. D. Badger, I. G. Hughes, and C. S. Adams, Journal of Physics. B, Atomic, Molecular, and Optical Physics 34, L749-L756 (2001).
    [18] P. C. Guan and I. A. Yu, Physical Review A 76, 033817 (2007).
    [19] D. A. Steck, Rubidium 85 D Line Data, University of Oregon, Eugene, Oregon, 2008.
    [20] L. A. Lugiato, M. Brambilla, and F. Prati, Nonlinear Optical Systems (Cambridge University, 2015), Page 29-37.
    [21] C. J. Foot, emph{Atomic Physics} (Oxford University, 2005), Page 123-148.
    [22] 黃興翰, 碩士論文, 國立成功大學, 2022.

    下載圖示 校內:2025-08-31公開
    校外:2025-08-31公開
    QR CODE