簡易檢索 / 詳目顯示

研究生: 曾裕超
Tseng, Yu-Chao
論文名稱: 以原位合成高分子網絡為鋰離子電池擬固態電解質之研究
In-Situ Synthesized Polymer Networks as Quasi-Solid-State Electrolytes for Lithium Ion Batteries
指導教授: 詹正雄
Jan, Jeng-Shiung
共同指導教授: 侯聖澍
Hou, Sheng-Shu
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 134
中文關鍵詞: 電解質鋰離子電池聚(偏二氟乙烯-六氟丙烯)原位聚合無溶劑反應聚離子液體
外文關鍵詞: electrolytes, lithium ion battery, poly(VdF-co-HFP), in-situ polymerization, solvent-free reaction, poly(ionic liquid)s
相關次數: 點閱:69下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文製備一系列高分子電解質並探討其在鋰離子電池之應用評估。研究內容分述於以下三個章節: (1)聚(偏二氟乙烯-六氟丙烯)/離子液體/碳酸酯類膠態高分子電解質薄膜之製備、(2)以雙離子型咪唑基交聯劑原位生成擬固態高分子電解質、(3)以原位合成具有完全交聯網絡的擬固態高分子電解質
    在第一部分(Chapter 3)中,製備的膠態高分子電解質以聚(偏二氟乙烯-六氟丙烯)為主體根據不同的碳酸酯類添加量,電解質薄膜表面呈現出各種形態的微孔洞。這些微孔洞對於組裝成電池後的表面阻抗以及電池壽命具有顯著影響。此外,適量的碳酸酯類添加量能夠在改善離子傳輸的同時兼具電化學穩定性,使得薄膜在室溫下的離子傳導度高達2.3 × 10-3 S cm-1並具備寬廣的電化學視窗。以此電解質薄膜組裝而成的Li/LiFePO4電池在0.2 C及0.1 C充放電速率下的放電電容量可達到143 mAh g-1與 120 mAh g-1且0.2 C下的循環壽命可超過200圈並維持極佳的介面穩定性。
    本論文第二部分(Chapter 4)研究藉由高分子結構上的改質在不添加碳酸酯類的條件下改善了電解質/電極介面間的阻抗。首先,我們結合原位聚合以及無溶劑反應並搭配雙離子型咪唑基交聯劑製備出全新的擬固態高分子電解質,為其提供了一種直接、有效率、通用性強的製程途徑。室溫下,此擬固態電解質具有寬廣的電化學視窗、高達10-4 S cm-1的離子傳導度以及理想的形變能力(薄膜在60 %壓縮應變下可保持外觀不開裂)。此外,藉由將欲聚物溶液澆注並聚合於鋰金屬上,以此電解質薄膜組裝而成的Li/LiFePO4電池其電解質/電極介面間能維持良好附著並展現出極佳的充放電電容量以及高循環壽命(電池於室溫、0.2 C充放電條件下,循環150圈後能維持93.8 %的放電電容量;電池於60 oC、0.5 C充放電條件下,循環100圈後能維持94.6 %的放電電容量),為次世代電池技術提供了一具前瞻性之電解質組成物與製備方法。
    本論文第三部分(Chapter 5)探討了以硫醇-烯點擊化學製備電解質之可行性。我們首先結合離子液體與聚乙二醇結構優點合成出一全新的雙離子型交聯劑定將其引入電解質組成,隨後在紫外光引發起始劑作用下藉由原位合成與無溶劑反應在鋰金屬上生成一系列的擬固態高分子電解質。透過交聯程度的調控,這些擬固態電解質的離子傳導度介於0.7 ~ 1.1 mS cm-1,而其壓縮彈性膜量在5 %應變時則介於0.072 ~ 0.349 Mpa之間。此外,可利用FT-IR來分析碳-碳雙鍵(C=C)反應加以確認完整交聯網絡的形成。此完整的交聯網絡有利於生成互相聯通的離子傳遞通道使得以此電解質薄膜組裝而成的Li/LiFePO4電池具備寬廣的電化學視窗以及室溫下突出的放電電容量(電池於0.2 C及0.5 C充放電條件下的放電電容量分別為153 mAh g-1與133 mAh g-1)。
    總體而言,本論文電解質的研究趨勢由膠態電解質(chapter 3)開始進而邁入擬固態電解質(Chapter 4 and 5)。而其製備方式則由溶劑澆注法(chapter 3)入手進一步以無溶劑參與的原位生成法取代(Chapter 4:使用熱聚合反應、Chapter 5:使用光聚合反應)。此外,我們以設計的聚離子液體結構(Chapter 4 and 5)取代商業化材料聚(偏二氟乙烯-六氟丙烯) (chapter 3)作為提供機械強度的高分子主體。統籌以上說明,本論文開發出各種具有多種成分的高分子電解質並詳細探討搭配這些電解質組裝而成的電池其在材料物性以及電化學性能上所取得的進展。

    In this dissertation, a series of polymer structures were synthesized, and their applications as electrolytes for lithium ion battery were explored. The main research in this monograph is divided into three chapters: (1) Preparation of Gel Polymer Electrolytes Based on Poly(VdF-co-HFP)/Ionic Liquid/Carbonate Membranes, (2) In-Situ Formation of Quasi-Solid Polymer Electrolytes Using A Dicationic Imidazolium Cross-linker, and (3) In-Situ Synthesis of Quasi-Solid Polymer Electrolytes with Fully Cross-Linked Networks.
    In the first part (Chapter 3), several gel polymer electrolytes (GPEs) based on poly(vinylidene fluoride-co-hexafluoropropylene) (poly(VdF-co-HFP)) were prepared, revealing micropores on membranes with various morphologies depending on the added carbonate content. The addition of carbonate also facilitates the improvement of ion transport without compromising the electrochemical stability, consequently resulting in a high ionic conductivity of around 2.3 × 10-3 S cm-1 at room temperature and a wide electrochemical window. In particular, the Li/LiFePO4 cells assembled with the GPEs deliver remarkable discharge capacities of 143 mAh g-1 and 120 mAh g-1 at 0.2 C and 1 C rates, respectively, with excellent capacity retention over 300 cycles at a rate of 0.2 C, as well as great interfacial stability after long-term cycling.
    The second part (Chapter 4) reported on the improvement of interfacial resistance between electrolyte/electrode. An in-situ solventless polymerization was adopted to fabricate quasi-solid polymer electrolytes (quasi-SPEs) reacted with dicationic imidazolium compounds, providing a direct, effective, and versatile pathway for the preparation of electrolytes. At room temperature, the obtained quasi-SPEs exhibit a wide electrochemical window, an ionic conductivity higher than 10-4 S cm-1 and an outstanding deformation ability without cracking at a 60 % compressive strain. Furthermore, a conformal attachment on the electrolyte/electrode interface and a superior charge-discharge capacity as well as a long cycle life at 25 oC (0.2 C rate, 93.8 % after 150 cycles) and 60 oC (0.5 C rate, 94.6 % after 100 cycles) can be achieved in the assembled Li/LiFePO4 cell by forming the quasi-SPEs onto lithium metal directly, suggesting a promising approach for next-generation battery technologies.
    The third part (Chapter 5) presented a thiol-ene click chemistry to create a prompt method for electrolyte production. Herein, quasi-SPEs based on a new dicationic imidazolium-based cross-linker end-linked with polyethylene glycol (PEG) segments were synthesized via the photopolymerization and an in-situ solvent-free strategy. Depending on the composition of these quasi-SPEs, ionic conductivities are found to vary between 0.7 and 1.1 mS cm-1, while compressive elastic moduli reveal the values between 0.072 and 0.349 MPa observed at a 5 % strain. These results, together with FT-IR analysis, indicate that fully cross-linked networks can be formed, which is conducive to generate well-connected ion channels and afford the assembled Li/LiFePO4 cell with a wide electrochemical window and a remarkable discharge capacity (153 mAh g-1 at 0.2 C and 133 mAh g-1 at 1 C) at 25 oC.
    On the whole, the research trend of the electrolytes in this dissertation is from GPEs (chapter 3) to quasi-SPEs (Chapter 4 and 5), while the preparation method of electrolytes is from solvent casting method (chapter 3) to in-situ generation (thermal polymerization in Chapter 4 and photopolymerization in Chapter 5). As a role of polymer host, commercial poly(VdF-co-HFP) (chapter 3) was replaced by the designed poly(ionic liquid)s (Chapter 4 and 5). In brief, this research developed three kinds of electrolytes with multiple compositions, the progress and performance of the batteries based on these electrolytes would be discussed in this dissertation in detail.

    ABSTRACT i 摘 要 iii 致 謝 v CONTENTS vii LIST OF FIGURES x LIST OF TABLES xv CHAPTER 1. INTRODUCTION 1 1.1 Overview of Batteries 2 1.2 General Concept of Lithium Battery 3 1.3 Electrolyte of Lithium Battery 7 1.3.1 Type of Electrolyte 8 1.3.2 Liquid Electrolyte 9 1.3.3 Solid Polymer Electrolyte 10 1.3.4 Gel Polymer Electrolyte 12 1.3.5 Quasi-Solid Polymer Electrolyte 14 1.3.6 Composite Polymer Electrolyte 15 1.4 Plasticizer in Electrolyte of Lithium Battery 16 1.5 Design Principle of Polymer Structure 19 1.6 Literature Review 20 1.6.1 Polycation 20 1.6.2 Polyanion 24 1.6.3 Comparison of Polycations and Polyanions 26 1.6.4 Polyzwitterion 28 1.7 Mechanism of Ion Transfer 30 1.8 Research Objectives 31 CHAPTER 2. EXPERIMENTAL METHODS 35 2.1 Materials 35 2.2 Structural Characterization and Morphological Observation 35 2.3 Measurement of Thermal Behaviors, Mechanical Stabilities, Ionic Conductivities and Electrochemical Stability 36 2.4 Preparation of LiFePO4 cathode 38 2-5 Preparation of Lithium Battery and Charge-discharge Performance 38 CHAPTER 3. Preparation of Gel Polymer Electrolytes Based on Poly(VdF-co-HFP)/Ionic Liquid/Carbonate Membranes 39 3.1 Chapter Abstract 39 3.2 Chapter Introduction 39 3.3 Materials Preparation 40 3.3.1 Anion substitution of IL 40 3.3.2 Preparation of Poly(VdF-co-HFP)/Ionic Liquid/Carbonate Membranes 40 3.4 Results and Discussion 42 3.4.1 Preparation and Morphology of the Electrolytes 42 3.4.2 Thermal Properties 46 3.4.3 Ionic Conductivity and Electrochemical Stability 49 3.4.4 Performance of Li/LiFePO4 cell 50 3.4.5 AC Impedance 54 3.5 Chapter Conclusions 56 CHAPTER 4. In-Situ Formation of Quasi-Solid Polymer Electrolytes Using A Dicationic Imidazolium Cross-linker 58 4.1 Chapter Abstract 58 4.2 Chapter Introduction 58 4.3 Materials Preparation 59 4.3.1 Synthesis of Prepolymers (VIm-TFSI and XVIm-TFSI) 59 4.3.2 Electrolyte Preparation 60 4.4 Results and Discussion 61 4.4.1 Structural Characterization and Morphology of the Electrolytes 61 4.4.2 Ionic Conductivity, Mechanical Property, Thermal Property and Electrochemical Stability 66 4.4.3 Performance of Li/LiFePO4 cell 74 4.4.4 AC Impedance 79 4.4.5 Anode Morphology 81 4.4.6 Literature Comparison 83 4.5 Chapter Conclusions 85 CHAPTER 5. In-Situ Synthesis of Quasi-Solid Polymer Electrolytes with Fully Cross-Linked Networks 86 5.1 Chapter Abstract 86 5.2 Chapter Introduction 86 5.3 Materials Preparation 87 5.3.1 Synthesis of bromo-terminated PEG derivative (Br-PEG400-Br) 87 5.3.2 Synthesis of dicationic PEG-containing cross-linker (VIm-PEG400-VIm) 88 5.3.3 Preparation of the quasi-solid polymer electrolytes (SPE-X) 88 5.4 Results and Discussion 90 5.4.1 Structural Characterization, Morphology and Rheology of the Electrolytes 90 5.4.2 Thermal Property, Mechanical Property, Ionic Conductivity and Electrochemical Stability 99 5.4.3 Performance of Li/LiFePO4 cell 106 5.4.4 AC Impedance and Anode Morphology 109 5.4.5 Literature Comparison 112 5.5 Chapter Conclusions 114 CHAPTER 6. CONCLUSIONS AND RECOMMENDATIONS 115 REFERENCES 117 CURRICULUM VITAE 130

    1. A. S. Arico, P. Bruce, B. Scrosati, J. M. Tarascon and W. Van Schalkwijk, Nat Mater, 2005, 4, 366-377.
    2. M. Armand and J. M. Tarascon, Nature, 2008, 451, 652-657.
    3. B. Kang and G. Ceder, Nature, 2009, 458, 190-193.
    4. Y. K. Sun, S. T. Myung, B. C. Park, J. Prakash, I. Belharouak and K. Amine, Nat Mater, 2009, 8, 320-324.
    5. J. B. Goodenough and K. S. Park, J Am Chem Soc, 2013, 135, 1167-1176.
    6. J. B. Goodenough, Nat Electron, 2018, 1, 204-204.
    7. Y. R. Liang, C. Z. Zhao, H. Yuan, Y. Chen, W. C. Zhang, J. Q. Huang, D. S. Yu, Y. L. Liu, M. M. Titirici, Y. L. Chueh, H. J. Yu and Q. Zhang, Infomat, 2019, 1, 6-32.
    8. J. Y. Rao, N. S. Liu, Z. Zhang, J. Su, L. Y. Li, L. Xiong and Y. H. Gao, Nano Energy, 2018, 51, 425-433.
    9. Z. X. Liu, H. F. Li, M. S. Zhu, Y. Huang, Z. J. Tang, Z. X. Pei, Z. F. Wang, Z. C. Shi, J. Liu, Y. Huang and C. Y. Zhi, Nano Energy, 2018, 44, 164-173.
    10. X. F. Wang, X. H. Lu, B. Liu, D. Chen, Y. X. Tong and G. Z. Shen, Adv Mater, 2014, 26, 4763-4782.
    11. A. Masias, J. Marcicki and W. A. Paxton, Acs Energy Lett, 2021, 6, 621-630.
    12. A. Eftekhari, Acs Sustain Chem Eng, 2019, 7, 5602-5613.
    13. S. R. Chen, F. Dai and M. Cai, Acs Energy Lett, 2020, 5, 3140-3151.
    14. W. L. Cai, Y. X. Yao, G. L. Zhu, C. Yan, L. L. Jiang, C. X. He, J. Q. Huang and Q. Zhang, Chem Soc Rev, 2020, 49, 3806-3833.
    15. G. He, J. Lin, F. Sifuentes, X. Liu, N. Abhyankar and A. Phadke, Nat Commun, 2020, 11.
    16. J. G. Sun, M. C. Li, J. A. S. Oh, K. Y. Zeng and L. Lu, Mater Technol, 2018, 33, 563-573.
    17. A. Yoshino, in Lithium-ion batteries, Elsevier, 2014, pp. 1-20.
    18. K. M. Abraham, J Phys Chem Lett, 2015, 6, 830-844.
    19. P. V. Kamat, Acs Energy Lett, 2019, 4, 2757-2759.
    20. Y. S. Hu and Y. X. Lu, Acs Energy Lett, 2019, 4, 2689-2690.
    21. A. Manthiram, Acs Central Sci, 2017, 3, 1063-1069.
    22. T. Kim, W. T. Song, D. Y. Son, L. K. Ono and Y. B. Qi, Journal of Materials Chemistry A, 2019, 7, 2942-2964.
    23. Y. Zhao, O. Pohl, A. I. Bhatt, G. E. Collis, P. J. Mahon, T. Rüther and A. F. Hollenkamp, Sustainable Chemistry, 2021, 2, 167-205.
    24. TechNavio, 2020.
    25. A. Manthiram, Nat Commun, 2020, 11, 1-9.
    26. N. Mohamed and N. K. Allam, Rsc Adv, 2020, 10, 21662-21685.
    27. A. Chakraborty, S. Kunnikuruvan, S. Kumar, B. Markovsky, D. Aurbach, M. Dixit and D. T. Major, Chem Mater, 2020, 32, 915-952.
    28. Y. Lyu, X. Wu, K. Wang, Z. Feng, T. Cheng, Y. Liu, M. Wang, R. Chen, L. Xu, J. Zhou, Y. Lu and B. Guo, Adv Energy Mater, 2021, 11, 2000982.
    29. Y. Shi, G. Chen and Z. Chen, Green Chem, 2018, 20, 851-862.
    30. K. Ozawa, Solid State Ionics, 1994, 69, 212-221.
    31. M. J. Lee, S. Lee, P. Oh, Y. Kim and J. Cho, Nano Lett, 2014, 14, 993-999.
    32. Y. J. Shin and A. Manthiram, J Electrochem Soc, 2004, 151, A204-A208.
    33. J. T. Hu, W. Y. Huang, L. Y. Yang and F. Pan, Nanoscale, 2020, 12, 15036-15044.
    34. K. Striebel, J. Shim, A. Sierra, H. Yang, X. Y. Song, R. Kostecki and K. McCarthy, J Power Sources, 2005, 146, 33-38.
    35. S. F. Yang, Y. N. Song, K. Ngala, P. Y. Zavalij and M. S. Whittingham, J Power Sources, 2003, 119, 239-246.
    36. A. Eftekhari, J Power Sources, 2017, 343, 395-411.
    37. Z. P. Ma, G. J. Shao, Y. Q. Fan, G. L. Wang, J. J. Song and T. T. Liu, Acs Appl Mater Inter, 2014, 6, 9236-9244.
    38. J. L. Li, B. L. Armstrong, C. Daniel, J. Kiggans and D. L. Wood, J Colloid Interf Sci, 2013, 405, 118-124.
    39. N. Nitta, F. X. Wu, J. T. Lee and G. Yushin, Mater Today, 2015, 18, 252-264.
    40. H. Cheng, J. G. Shapter, Y. Y. Li and G. Gao, J Energy Chem, 2021, 57, 451-468.
    41. Y. R. Zhong, M. Yang, X. L. Zhou and Z. Zhou, Mater Horiz, 2015, 2, 553-566.
    42. J. Asenbauer, T. Eisenmann, M. Kuenzel, A. Kazzazi, Z. Chen and D. Bresser, Sustain Energ Fuels, 2020, 4, 5387-5416.
    43. K. Persson, V. A. Sethuraman, L. J. Hardwick, Y. Hinuma, Y. S. Meng, A. van der Ven, V. Srinivasan, R. Kostecki and G. Ceder, J Phys Chem Lett, 2010, 1, 1176-1180.
    44. Y. Qi, H. B. Guo, L. G. Hector and A. Timmons, J Electrochem Soc, 2010, 157, A558-A566.
    45. B. V. Babu, K. V. Babu, G. T. Aregai, L. S. Devi, B. M. Latha, M. S. Reddi, K. Samatha and V. Veeraiah, Results Phys, 2018, 9, 284-289.
    46. C. W. Chang-Jian, B. C. Ho, C. K. Chung, J. A. Chou, C. L. Chung, J. H. Huang, J. H. Huang and Y. S. Hsiao, Ceram Int, 2018, 44, 23063-23072.
    47. S. J. Wen, G. J. Li, R. M. Ren and C. Y. Li, Mater Lett, 2015, 148, 130-133.
    48. J. F. Colin, V. Godbole and P. Novak, Electrochem Commun, 2010, 12, 804-807.
    49. M. Wagemaker, D. R. Simon, E. M. Kelder, J. Schoonman, C. Ringpfeil, U. Haake, D. Lutzenkirchen-Hecht, R. Frahm and F. M. Mulder, Adv Mater, 2006, 18, 3169-3173.
    50. S. Scharner, W. Weppner and P. Schmid-Beurmann, J Electrochem Soc, 1999, 146, 857-861.
    51. Q. Wang, J. Zhang, W. Liu, X. H. Xie and B. J. Xia, J Power Sources, 2017, 343, 564-570.
    52. C. P. Han, Y. B. He, M. Liu, B. H. Li, Q. H. Yang, C. P. Wong and F. Y. Kang, Journal of Materials Chemistry A, 2017, 5, 6368-6381.
    53. A. Casimir, H. G. Zhang, O. Ogoke, J. C. Amine, J. Lu and G. Wu, Nano Energy, 2016, 27, 359-376.
    54. M. Yoshio, T. Tsumura and N. Dimov, J Power Sources, 2005, 146, 10-14.
    55. J. Lu, Z. W. Chen, F. Pan, Y. Cui and K. Amine, Electrochem Energy R, 2018, 1, 35-53.
    56. D. H. Liu, Z. Y. Bai, M. Li, A. P. Yu, D. Luo, W. W. Liu, L. Yang, J. Lu, K. Amine and Z. W. Chen, Chem Soc Rev, 2020, 49, 5407-5445.
    57. S. P. Li, F. Lorandi, J. F. Whitacre and K. Matyjaszewski, Macromol Chem Phys, 2020, 221, 1900379.
    58. J. Xie and Y.-C. Lu, Nat Commun, 2020, 11, 1-4.
    59. M. B. Armand, in Materials for Advanced Batteries, eds. D. W. Murphy, J. Broadhead and B. C. H. Steele, Springer US, Boston, MA, 1980, DOI: 10.1007/978-1-4684-3851-2_7, pp. 145-161.
    60. M. Montanino, S. Passerini and G. Appetecchi, in Rechargeable Lithium Batteries, Elsevier, 2015, pp. 73-116.
    61. Y. S. Yu, B. J. Xiong, F. X. Y. Zeng, R. Z. Xu, F. Yang, J. Kang, M. Xiang, L. Li, X. Y. Sheng and Z. H. Hao, Ind Eng Chem Res, 2018, 57, 17142-17151.
    62. S. Mitra and A. R. Kulkarni, Solid State Ionics, 2002, 154, 37-43.
    63. O. Mizrahi, N. Amir, E. Pollak, O. Chusid, V. Marks, H. Gottlieb, L. Larush, E. Zinigrad and D. Aurbach, J Electrochem Soc, 2007, 155, A103.
    64. C. Liu, Z. G. Neale and G. Cao, Mater Today, 2016, 19, 109-123.
    65. S. Patoux, L. Daniel, C. Bourbon, H. Lignier, C. Pagano, F. Le Cras, S. Jouanneau and S. Martinet, J Power Sources, 2009, 189, 344-352.
    66. D. Zhou, D. Shanmukaraj, A. Tkacheva, M. Armand and G. X. Wang, Chem-Us, 2019, 5, 2326-2352.
    67. K. Xu, Chem Rev, 2004, 104, 4303-4418.
    68. J. Kalhoff, G. G. Eshetu, D. Bresser and S. Passerini, Chemsuschem, 2015, 8, 2154-2175.
    69. K. Tasaki, A. Goldberg and M. Winter, Electrochim Acta, 2011, 56, 10424-10435.
    70. L. Xing, W. Li, C. Wang, F. Gu, M. Xu, C. Tan and J. Yi, The Journal of Physical Chemistry B, 2009, 113, 16596-16602.
    71. X. Wu, K. Song, X. Zhang, N. Hu, L. Li, W. Li, L. Zhang and H. Zhang, Frontiers in Energy Research, 2019, 7, 65.
    72. Y. Q. Chen, Y. Q. Kang, Y. Zhao, L. Wang, J. L. Liu, Y. X. Li, Z. Liang, X. M. He, X. Li, N. Tavajohi and B. H. Li, J Energy Chem, 2021, 59, 83-99.
    73. H. C. Wang, L. Sheng, G. Yasin, L. Wang, H. Xu and X. M. He, Energy Storage Mater, 2020, 33, 188-215.
    74. L. Fan, S. Y. Wei, S. Y. Li, Q. Li and Y. Y. Lu, Adv Energy Mater, 2018, 8, 1702657.
    75. A. Arya and A. L. Sharma, Ionics, 2017, 23, 497-540.
    76. D. E. Fenton, J. M. Parker and P. V. Wright, Polymer, 1973, 14, 589-589.
    77. Z. G. Xue, D. He and X. L. Xie, Journal of Materials Chemistry A, 2015, 3, 19218-19253.
    78. S. T. Hsu, B. T. Tran, R. Subramani, H. T. T. Nguyen, A. Rajamani, M. Y. Lee, S. S. Hou, Y. L. Lee and H. Teng, J Power Sources, 2020, 449, 227518.
    79. X. Z. Chen, W. J. He, L. X. Ding, S. Q. Wang and H. H. Wang, Energ Environ Sci, 2019, 12, 938-944.
    80. S. Liang, W. Yan, X. Wu, Y. Zhang, Y. Zhu, H. Wang and Y. Wu, Solid State Ionics, 2018, 318, 2-18.
    81. F. Baskoro, H. Q. Wong and H.-J. Yen, ACS Applied Energy Materials, 2019, 2, 3937-3971.
    82. L. Z. Zhao, J. C. Fu, Z. Du, X. B. Jia, Y. Y. Qu, F. Yu, J. Du and Y. Chen, J Membrane Sci, 2020, 593, 117428.
    83. J. H. Shin, W. A. Henderson and S. Passerini, J Electrochem Soc, 2005, 152, A978-A983.
    84. A. Guerfi, M. Dontigny, P. Charest, M. Petitclerc, M. Lagace, A. Vijh and K. Zaghib, J Power Sources, 2010, 195, 845-852.
    85. H. F. Li, J. Pang, Y. P. Yin, W. D. Zhuang, H. Wang, C. X. Zhai and S. G. Lu, Rsc Adv, 2013, 3, 13907-13914.
    86. Q. W. Lu, J. H. Fang, J. Yang, G. W. Yan, S. S. Liu and J. L. Wang, J Membrane Sci, 2013, 425, 105-112.
    87. N. H. Gondaliya, Nanobatteries and Nanogenerators: Materials, Technologies and Applications, 2020, 365.
    88. H. Zhang, L. Sheng, Y. Bai, S. Song, G. Liu, H. Xue, T. Wang, X. Huang and J. He, Advanced Engineering Materials, 2020, 22, 1901545.
    89. H. Li, J. Yang, Z. Xu, H. Lu, T. Zhang, S. Chen, J. Wang, Y. NuLi and S.-i. Hirano, ACS Applied Energy Materials, 2020, 3, 8552-8561.
    90. P. Yang, X. Gao, X. Tian, C. Shu, Y. Yi, P. Liu, T. Wang, L. Qu, B. Tian and M. Li, Acs Energy Lett, 2020, 5, 1681-1688.
    91. B. Zhou, Y. H. Jo, R. Wang, D. He, X. Zhou, X. Xie and Z. Xue, Journal of Materials Chemistry A, 2019, 7, 10354-10362.
    92. Y. Zhu, J. Cao, H. Chen, Q. Yu and B. Li, Journal of Materials Chemistry A, 2019, 7, 6832-6839.
    93. P. Pal and A. Ghosh, Electrochim Acta, 2018, 260, 157-167.
    94. R. Premila, C. Subbu and S. Rajendran, Appl Surf Sci, 2018, 449, 426-434.
    95. S. N. Banitaba, D. Semnani, B. Rezaei and A. A. Ensafi, Polymers for Advanced Technologies, 2019, 30, 1234-1242.
    96. E. M. Masoud, A.-A. El-Bellihi, W. A. Bayoumy and E. A. Mohamed, Journal of Molecular Liquids, 2018, 260, 237-244.
    97. R. Kumar, A. Subramania, N. K. Sundaram, G. V. Kumar and I. Baskaran, J Membrane Sci, 2007, 300, 104-110.
    98. S. Nematdoust, R. Najjar, D. Bresser and S. Passerini, The Journal of Physical Chemistry C, 2020, 124, 27907-27915.
    99. N. Chen, H. Zhang, L. Li, R. Chen and S. Guo, Adv Energy Mater, 2018, 8, 1702675.
    100. F. R. Ma, Z. Q. Zhang, W. C. Yan, X. D. Ma, D. Y. Sun, Y. C. Jin, X. C. Chen and K. He, Acs Sustain Chem Eng, 2019, 7, 4675-4683.
    101. Y.-S. Ye, J. Rick and B.-J. Hwang, Journal of Materials Chemistry A, 2013, 1, 2719-2743.
    102. X. G. Sun, C. Liao, N. Shao, J. R. Bell, B. K. Guo, H. M. Luo, D. E. Jiang and S. Dai, J Power Sources, 2013, 237, 5-12.
    103. Y. D. Jin, S. H. Fang, M. Chai, L. Yang, K. Tachibana and S. Hirano, J Power Sources, 2013, 226, 210-218.
    104. H. Nakagawa, Y. Fujino, S. Kozono, Y. Katayama, T. Nukuda, H. Sakaebe, H. Matsumoto and K. Tatsumi, J Power Sources, 2007, 174, 1021-1026.
    105. M. J. Earle, J. M. S. S. Esperanca, M. A. Gilea, J. N. C. Lopes, L. P. N. Rebelo, J. W. Magee, K. R. Seddon and J. A. Widegren, Nature, 2006, 439, 831-834.
    106. M. Smiglak, W. M. Reichert, J. D. Holbrey, J. S. Wilkes, L. Y. Sun, J. S. Thrasher, K. Kirichenko, S. Singh, A. R. Katritzky and R. D. Rogers, Chem Commun, 2006, DOI: 10.1039/b602086k, 2554-2556.
    107. B. G. Yang, G. J. Yang, Y. M. Zhang and S. X. A. Zhang, J Mater Chem C, 2021, 9, 4730-4741.
    108. Z. J. Du, X. C. Chen, R. Sahore, X. Y. Wu, J. L. Li and N. J. Dudney, J Electrochem Soc, 2021, 168, 050549.
    109. J. H. Cha, P. N. Didwal, J. M. Kim, D. R. Chang and C.-J. Park, J Membrane Sci, 2020, 595, 117538.
    110. L. Carbone, M. Gobet, J. Peng, M. Devany, B. Scrosati, S. Greenbaum and J. Hassoun, J Power Sources, 2015, 299, 460-464.
    111. R. Bernhard, A. Latini, S. Panero, B. Scrosati and J. Hassoun, J Power Sources, 2013, 226, 329-333.
    112. D.-J. Lee, J. Hassoun, S. Panero, Y.-K. Sun and B. Scrosati, Electrochem Commun, 2012, 14, 43-46.
    113. S. Choudhury, Z. Tu, A. Nijamudheen, M. J. Zachman, S. Stalin, Y. Deng, Q. Zhao, D. Vu, L. F. Kourkoutis and J. L. Mendoza-Cortes, Nat Commun, 2019, 10, 1-11.
    114. S. S. Zhang, J Power Sources, 2013, 231, 153-162.
    115. K. Liu, Q. Q. Zhang, B. P. Thapaliya, X. G. Sun, F. Ding, X. J. Liu, J. L. Zhang and S. Dai, Solid State Ionics, 2020, 345, 115159.
    116. P. F. Lv, Y. S. Li, Y. H. Wu, G. B. Liu, H. Liu, S. M. Li, C. Y. Tang, J. Mei and Y. T. Li, Acs Appl Mater Inter, 2018, 10, 25384-25392.
    117. Q. Q. Zhang, K. Liu, F. Ding, W. Li, X. J. Liu and J. L. Zhang, Acs Appl Mater Inter, 2017, 9, 29820-29828.
    118. P. Hu, J. C. Chai, Y. L. Duan, Z. H. Liu, G. L. Cui and L. Q. Chen, Journal of Materials Chemistry A, 2016, 4, 10070-10083.
    119. K. H. Choi, S. J. Cho, S. H. Kim, Y. H. Kwon, J. Y. Kim and S. Y. Lee, Adv Funct Mater, 2014, 24, 44-52.
    120. P. Derollez, J. Lefebvre, M. Descamps, W. Press and H. Fontaine, Journal of Physics: Condensed Matter, 1990, 2, 6893.
    121. M. Echeverri, N. Kim and T. Kyu, Macromolecules, 2012, 45, 6068-6077.
    122. R. X. He, F. Peng, W. E. Dunn and T. Kyu, Electrochim Acta, 2017, 246, 123-134.
    123. L. Long, S. Wang, M. Xiao and Y. Meng, Journal of Materials Chemistry A, 2016, 4, 10038-10069.
    124. N. Verdier, D. Lepage, R. Zidani, A. Prebe, D. Ayme-Perrot, C. Pellerin, M. Dolle and D. Rochefort, Acs Applied Energy Materials, 2020, 3, 1099-1110.
    125. S. H. Wang, P. L. Kuo, C. T. Hsieh and H. S. Teng, Acs Appl Mater Inter, 2014, 6, 19360-19370.
    126. D. Rosenbach, N. Modl, M. Hahn, J. Petry, M. A. Danzer and M. Thelakkat, Acs Applied Energy Materials, 2019, 2, 3373-3388.
    127. S. Q. Li, K. Jiang, J. R. Wang, C. Zuo, Y. H. Jo, D. He, X. L. Xie and Z. G. Xue, Macromolecules, 2019, 52, 7234-7243.
    128. Y. Li, K. W. Wong, Q. Q. Dou, W. Zhang and K. M. Ng, Acs Applied Energy Materials, 2018, 1, 2664-2670.
    129. P. Zhang, R. Li, J. Huang, B. Y. Liu, M. J. Zhou, B. Z. Wen, Y. G. Xia and S. Okada, Rsc Adv, 2021, 11, 11943-11951.
    130. K. X. Huang, Y. Y. Wang, H. W. Mi, D. T. Ma, B. Yong and P. X. Zhang, Journal of Materials Chemistry A, 2020, 8, 20593-20603.
    131. S. Caimi, H. Wu and M. Morbidelli, Acs Applied Energy Materials, 2018, 1, 5224-5232.
    132. A. S. Shaplov, R. Marcilla and D. Mecerreyes, Electrochim Acta, 2015, 175, 18-34.
    133. J. Y. Yuan, D. Mecerreyes and M. Antonietti, Prog Polym Sci, 2013, 38, 1009-1036.
    134. N. Nishimura and H. Ohno, Polymer, 2014, 55, 3289-3297.
    135. D. Mecerreyes, Prog Polym Sci, 2011, 36, 1629-1648.
    136. G. B. Appetecchi, G. T. Kim, M. Montanina, M. Carewska, R. Marcilla, D. Mecerreyes and I. De Meatza, J Power Sources, 2010, 195, 3668-3675.
    137. M. Safa, A. Chamaani, N. Chawla and B. El-Zahab, Electrochim Acta, 2016, 213, 587-593.
    138. X. W. Li, Z. X. Zhang, S. J. Li, L. Yang and S. Hirano, J Power Sources, 2016, 307, 678-683.
    139. S. J. Li, Z. X. Zhang, K. H. Yang and L. Yang, Chemelectrochem, 2018, 5, 328-334.
    140. M. T. Li, L. Yang, S. H. Fang, S. M. Dong, S. Hirano and K. Tachibana, J Power Sources, 2011, 196, 8662-8668.
    141. M. T. Li, L. Yang, S. H. Fang, S. M. Dong, S. Hirano and K. Tachibana, Polym Int, 2012, 61, 259-264.
    142. M. T. Li, B. L. Yang, L. Wang, Y. Zhang, Z. Zhang, S. H. Fang and Z. X. Zhang, J Membrane Sci, 2013, 447, 222-227.
    143. M. T. Li, L. Wang, B. L. Yang, T. T. Du and Y. Zhang, Electrochim Acta, 2014, 123, 296-302.
    144. K. Yin, Z. X. Zhang, L. Yang and S. I. Hirano, J Power Sources, 2014, 258, 150-154.
    145. K. Yin, Z. X. Zhang, X. W. Li, L. Yang, K. Tachibana and S. I. Hirano, Journal of Materials Chemistry A, 2015, 3, 170-178.
    146. Y. Zhou, B. Wang, Y. Yang, R. Li, Y. Wang, N. Zhou, J. Shen and Y. Zhou, Reactive and Functional Polymers, 2019, 145, 104375.
    147. X. L. Tian, Y. K. Yi, P. Yang, P. Liu, L. Qu, M. T. Li, Y. S. Hu and B. L. Yang, Acs Appl Mater Inter, 2019, 11, 4001-4010.
    148. D. Zhou, R. L. Liu, J. Zhang, X. G. Qi, Y. B. He, B. H. Li, Q. H. Yang, Y. S. Hu and F. Y. Kang, Nano Energy, 2017, 33, 45-54.
    149. Y. H. Li, Z. J. Sun, L. Shi, S. Y. Lu, Z. H. Sun, Y. C. Shi, H. Wu, Y. F. Zhang and S. J. Ding, Chem Eng J, 2019, 375, 121925.
    150. J. Zhu, Z. Zhang, S. Zhao, A. S. Westover, I. Belharouak and P. F. Cao, Adv Energy Mater, 2021, 11, 2003836.
    151. H. Zhang, C. M. Li, M. Piszcz, E. Coya, T. Rojo, L. M. Rodriguez-Martinez, M. Armand and Z. B. Zhou, Chem Soc Rev, 2017, 46, 797-815.
    152. G. M. Luo, B. Yuan, T. Y. Guan, F. Y. Cheng, W. Q. Zhang and J. Chen, Acs Applied Energy Materials, 2019, 2, 3028-3034.
    153. H. D. Nguyen, G. T. Kim, J. L. Shi, E. Paillard, P. Judeinstein, S. Lyonnard, D. Bresser and C. Iojoiu, Energ Environ Sci, 2018, 11, 3298-3309.
    154. G. Chen, C. Niu, Y. Chen, W. Shang, Y. Qu, Z. Du, L. Zhao, X. Liao, J. Du and Y. Chen, Solid State Ionics, 2019, 341, 115048.
    155. C. Cao, Y. Li, Y. Feng, C. Peng, Z. Li and W. Feng, Energy Storage Mater, 2019, 19, 401-407.
    156. Y. Liu, Y. Zhang, M. Pan, X. Liu, C. Li, Y. Sun, D. Zeng and H. Cheng, J Membrane Sci, 2016, 507, 99-106.
    157. L. Porcarelli, A. S. Shaplov, F. Bella, J. R. Nair, D. Mecerreyes and C. Gerbaldi, Acs Energy Lett, 2016, 1, 678-682.
    158. Y. Z. Chen, G. D. Xu, X. P. Liu, Q. Y. Pan, Y. F. Zhang, D. L. Zeng, Y. B. Sun, H. Z. Ke and H. S. Cheng, Rsc Adv, 2018, 8, 39967-39975.
    159. C. Brissot, M. Rosso, J. N. Chazalviel and S. Lascaud, J Power Sources, 1999, 81, 925-929.
    160. J. N. Chazalviel, Phys Rev A, 1990, 42, 7355-7367.
    161. X. W. Li, Y. W. Zheng, Q. W. Pan and C. Y. Li, Acs Appl Mater Inter, 2019, 11, 34904-34912.
    162. A. S. Shaplov, P. S. Vlasov, E. I. Lozinskaya, D. O. Ponkratov, I. A. Malyshkina, F. Vidal, O. V. Okatova, G. M. Pavlov, C. Wandrey, A. Bhide, M. Schonhoff and Y. S. Vygodskii, Macromolecules, 2011, 44, 9792-9803.
    163. M. E. Taylor and M. J. Panzer, J Phys Chem B, 2018, 122, 8469-8476.
    164. F. Lu, X. P. Gao, A. L. Wu, N. Sun, L. J. Shi and L. Q. Zheng, J Phys Chem C, 2017, 121, 17756-17763.
    165. F. Lind, L. Rebollar, P. Bengani-Lutz, A. Asatekin and M. J. Panzer, Chem Mater, 2016, 28, 8480-8483.
    166. M. Yoshizawa, M. Hirao, K. Ito-Akita and H. Ohno, J Mater Chem, 2001, 11, 1057-1062.
    167. M. E. Taylor, D. Clarkson, S. G. Greenbaum and M. J. Panzer, Acs Appl Polym Mater, 2021, 3, 2635-2645.
    168. F. Lu, G. Li, Y. Yu, X. Gao, L. Zheng and Z. Chen, Chem Eng J, 2020, 384, 123237.
    169. A. M. Christie, S. J. Lilley, E. Staunton, Y. G. Andreev and P. G. Bruce, Nature, 2005, 433, 50-53.
    170. W. S. Young, W. F. Kuan and T. H. Epps III, Journal of Polymer Science Part B: Polymer Physics, 2014, 52, 1-16.
    171. S. B. Aziz, T. J. Woo, M. F. Z. Kadir and H. M. Ahmed, J Sci-Adv Mater Dev, 2018, 3, 1-17.
    172. A. B. Lowe, Polym Chem-Uk, 2010, 1, 17-36.
    173. C. E. Hoyle, A. B. Lowe and C. N. Bowman, Chem Soc Rev, 2010, 39, 1355-1387.
    174. H. C. Ding, B. Q. Li, Z. L. Liu, G. Liu, S. Z. Pu, Y. J. Feng, D. C. Jia and Y. Zhou, Adv Healthc Mater, 2020, 9, 2000454.
    175. L. Kwisnek, S. Heinz, J. S. Wiggins and S. Nazarenko, J Membrane Sci, 2011, 369, 429-436.
    176. A. F. Senyurt, H. Y. Wei, C. E. Hoyle, S. G. Piland and T. E. Gould, Macromolecules, 2007, 40, 4901-4909.
    177. W. Ma, H. Yuan and X. Wang, Membranes, 2014, 4, 243-256.
    178. T. Vogl, S. Menne and A. Balducci, Physical Chemistry Chemical Physics, 2014, 16, 25014-25023.
    179. A. Brandt, C. Ramirez-Castro, M. Anouti and A. Balducci, Journal of Materials Chemistry A, 2013, 1, 12669-12678.
    180. P.-L. Kuo, C.-H. Tsao, C.-H. Hsu, S.-T. Chen and H.-M. Hsu, J Membrane Sci, 2016, 499, 462-469.
    181. R.-S. Kühnel, N. Böckenfeld, S. Passerini, M. Winter and A. Balducci, Electrochim Acta, 2011, 56, 4092-4099.
    182. L. Li, Y. Zhang, H. Y. Lu, Y. F. Wang, J. S. Xu, J. X. Zhu, C. Zhang and T. X. Liu, Nat Commun, 2020, 11, 62.
    183. H. L. Guo, J. Zhou, Q. Q. Li, Y. M. Li, W. Zong, J. X. Zhu, J. S. Xu, C. Zhang and T. X. Liu, Adv Funct Mater, 2020, 30, 2000024.
    184. H. L. Guo, Q. C. Feng, K. W. Xu, J. S. Xu, J. X. Zhu, C. Zhang and T. X. Liu, Adv Funct Mater, 2019, 29, 1903660.
    185. J. Rodriguez-Hernandez, Prog Polym Sci, 2015, 42, 1-41.
    186. P. F. Zhang, M. T. Li, B. L. Yang, Y. X. Fang, X. G. Jiang, G. M. Veith, X. G. Sun and S. Dai, Adv Mater, 2015, 27, 8088-8094.
    187. G. Luo, B. Yuan, T. Guan, F. Cheng, W. Zhang and J. Chen, ACS Applied Energy Materials, 2019, 2, 3028-3034.
    188. T. Guan, S. Qian, Y. Guo, F. Cheng, W. Zhang and J. Chen, ACS Materials Letters, 2019, 1, 606-612.
    189. V. Ambrogi, C. Carfagna, P. Cerruti and V. Marturano, in Modification of Polymer Properties, Elsevier, 2017, pp. 87-108.
    190. J. C. Bart, Additives in polymers: Industrial analysis and applications, John Wiley & Sons, 2005.
    191. A. L. Wang, X. Liu, S. Wang, J. Chen, H. Xu, Q. Xing and L. Y. Zhang, Electrochim Acta, 2018, 276, 184-193.
    192. M. H. Cohen and D. Turnbull, The Journal of Chemical Physics, 1959, 31, 1164-1169.
    193. B. Sun, J. Mindemark, E. V. Morozov, L. T. Costa, M. Bergman, P. Johansson, Y. Fang, I. Furó and D. Brandell, Physical Chemistry Chemical Physics, 2016, 18, 9504-9513.
    194. E. Langer, K. Bortel, M. Lenartowicz-Klik and S. Waskiewicz, Plasticizers Derived from Post-consumer PET: Research Trends and Potential Applications, William Andrew, 2019.
    195. J. R. Nair, L. Porcarelli, F. Bella and C. Gerbaldi, Acs Appl Mater Inter, 2015, 7, 12961-12971.
    196. S. Yamaguchi, M. Yoshizawa-Fujita, H. J. Zhu, M. Forsyth, Y. Takeoka and M. Rikukawa, Electrochim Acta, 2015, 186, 471-477.
    197. X. Tian, Y. Yi, P. Yang, P. Liu, L. Qu, M. Li, Y. S. Hu and B. Yang, ACS Appl Mater Interfaces, 2019, 11, 4001-4010.
    198. D. Zhou, R. Liu, J. Zhang, X. Qi, Y.-B. He, B. Li, Q.-H. Yang, Y.-S. Hu and F. Kang, Nano Energy, 2017, 33, 45-54.
    199. M. Liu, B. Jin, Q. Zhang, X. Zhan and F. Chen, Journal of Alloys and Compounds, 2018, 742, 619-628.
    200. N. Zhou, Y. Wang, Y. Zhou, J. Shen, Y. Zhou and Y. Yang, Electrochim Acta, 2019, 301, 284-293.
    201. T.-L. Chen, R. Sun, C. Willis, B. F. Morgan, F. L. Beyer and Y. A. Elabd, Polymer, 2019, 161, 128-138.
    202. G. Fu, M. D. Soucek and T. Kyu, Solid State Ionics, 2018, 320, 310-315.
    203. E. Quartarone and P. Mustarelli, Chem Soc Rev, 2011, 40, 2525-2540.
    204. W. D. Zhou, H. C. Gao and J. B. Goodenough, Adv Energy Mater, 2016, 6, 1501802.
    205. P. Barai, K. Higa and V. Srinivasan, Physical Chemistry Chemical Physics, 2017, 19, 20493-20505.
    206. Q. C. Zhuang, T. Wei, L. L. Du, Y. L. Cui, L. Fang and S. G. Sun, J Phys Chem C, 2010, 114, 8614-8621.
    207. D. S. Lu, W. S. Li, X. X. Zuo, Z. Z. Yuan and Q. Huang, J Phys Chem C, 2007, 111, 12067-12074.
    208. Q. W. Lu, Y. B. He, Q. P. Yu, B. H. Li, Y. V. Kaneti, Y. W. Yao, F. Y. Kang and Q. H. Yang, Adv Mater, 2017, 29, 1604460.
    209. K. Dai, C. Ma, Y. M. Feng, L. J. Zhou, G. C. Kuang, Y. Zhang, Y. Q. Lai, X. W. Cui and W. F. Wei, Journal of Materials Chemistry A, 2019, 7, 18547-18557.
    210. Y. H. Zhang, W. Lu, L. N. Cong, J. Liu, L. Q. Sun, A. Mauger, C. M. Julien, H. M. Xie and J. Liu, J Power Sources, 2019, 420, 63-72.
    211. Y. F. Tong, H. L. Lyu, Y. Z. Xu, B. P. Thapaliya, P. P. Li, X. G. Sun and S. Dai, Journal of Materials Chemistry A, 2018, 6, 14847-14855.
    212. H. Y. Yuan, J. Y. Luan, Z. L. Yang, J. Zhang, Y. F. Wu, Z. G. Lu and H. T. Liu, Acs Appl Mater Inter, 2020, 12, 7249-7256.
    213. Y. H. Jo, S. Q. Li, C. Zuo, Y. Zhang, H. H. Gan, S. B. Li, L. P. Yu, D. He, X. L. Xie and Z. G. Xue, Macromolecules, 2020, 53, 1024-1032.
    214. M. M. Cecchini, A. Bendjeriou, N. Mnasri, C. Charnay, F. De Angelis, F. Lamaty, J. Martinez and E. Colacino, New J Chem, 2014, 38, 6133-6138.
    215. H. B. Zhou, Y. Chen, C. M. Plummer, H. H. Huang and Y. M. Chen, Polym Chem-Uk, 2017, 8, 2189-2196.
    216. S. Lou, Q. Liu, F. Zhang, Q. Liu, Z. Yu, T. Mu, Y. Zhao, J. Borovilas, Y. Chen and M. Ge, Nat Commun, 2020, 11, 1-10.
    217. L. Xu, S. Tang, Y. Cheng, K. Wang, J. Liang, C. Liu, Y.-C. Cao, F. Wei and L. Mai, Joule, 2018, 2, 1991-2015.
    218. K. Jiang, J. R. Wang, C. Zuo, S. Q. Li, S. B. Li, D. He, H. Y. Peng, X. L. Xie, R. Poli and Z. G. Xue, Macromolecules, 2020, 53, 7450-7459.
    219. Z. S. Liu, J. J. Ou and H. F. Zou, Trac-Trend Anal Chem, 2016, 82, 89-99.
    220. F. Alves and I. Nischang, Chem-Eur J, 2013, 19, 17310-17313.
    221. N. Sahiner, M. Singh, D. De Kee, V. T. John and G. L. McPherson, Polymer, 2006, 47, 1124-1131.
    222. L. H. Weng, X. M. Chen and W. L. Chen, Biomacromolecules, 2007, 8, 1109-1115.
    223. H. Claesson, E. Malmstrom, M. Johansson, A. Hult, M. Doyle and J. A. E. Manson, Prog Org Coat, 2002, 44, 63-67.
    224. F. Chambon and H. H. Winter, J Rheol, 1987, 31, 683-697.
    225. H. H. Winter and F. Chambon, J Rheol, 1986, 30, 367-382.
    226. L. Z. Fan, Y. S. Hu, A. J. Bhattacharyya and J. Maier, Adv Funct Mater, 2007, 17, 2800-2807.
    227. L. L. Li, S. Y. Li and Y. Y. Lu, Chem Commun, 2018, 54, 6648-6661.
    228. R. Khurana, J. L. Schaefer, L. A. Archer and G. W. Coates, J Am Chem Soc, 2014, 136, 7395-7402.
    229. A. Tomaszewska, Z. Chu, X. Feng, S. O'Kane, X. Liu, J. Chen, C. Ji, E. Endler, R. Li and L. Liu, ETransportation, 2019, 1, 100011.
    230. Y. B. Zhao, Y. Bai, W. D. Li, M. Z. An, Y. P. Bai and G. R. Chen, Chem Mater, 2020, 32, 6811-6830.
    231. R. X. He and T. Kyu, Macromolecules, 2016, 49, 5637-5648.
    232. D. Bresser, S. Lyonnard, C. Iojoiu, L. Picard and S. Passerini, Mol Syst Des Eng, 2019, 4, 779-792.
    233. J. Brus, J. Czernek, M. Urbanova, J. Rohlicek and T. Plechacek, Acs Appl Mater Inter, 2020, 12, 47447-47456.
    234. A. Razmjou, M. Asadnia, E. Hosseini, A. H. Korayem and V. Chen, Nat Commun, 2019, 10, 1-15.
    235. H. N. Wang, X. Meng, L. Z. Dong, Y. Chen, S. L. Li and Y. Q. Lan, Journal of Materials Chemistry A, 2019, 7, 24059-24091.
    236. K. Saravanan, M. V. Reddy, P. Balaya, H. Gong, B. V. R. Chowdari and J. J. Vittal, J Mater Chem, 2009, 19, 605-610.
    237. P. Vadhva, J. Hu, M. J. Johnson, R. Stocker, M. Braglia, D. J. Brett and A. J. Rettie, Chemelectrochem, 2021, 8, 1930-1947.
    238. S. Zhang, K. Xu and T. Jow, Electrochim Acta, 2006, 51, 1636-1640.
    239. A. Wang, S. Kadam, H. Li, S. Shi and Y. Qi, Npj Comput Mater, 2018, 4, 1-26.
    240. X. L. Tian, P. Yang, Y. K. Yi, P. Liu, T. Wang, C. Y. Shu, L. Qu, W. Tang, Y. F. Zhang, M. T. Li and B. L. Yang, J Power Sources, 2020, 450, 227629.
    241. Y. Zhou, Y. Yang, N. Zhou, R. J. Li, Y. Zhou and W. W. Yan, Electrochim Acta, 2019, 324, 134827.
    242. T. Huang, M.-C. Long, X.-L. Wang, G. Wu and Y.-Z. Wang, Chem Eng J, 2019, 375, 122062.
    243. T. Huang, M. C. Long, G. Wu, Y. Z. Wang and X. L. Wang, Chemelectrochem, 2019, 6, 3674-3683.
    244. Y. Zhou, B. N. Wang, Y. Yang, R. J. Li, Y. F. Wang, N. Zhou, J. Y. Shen and Y. Zhou, React Funct Polym, 2019, 145, 104375.
    245. Q. Lu, J. F. Fu, L. Y. Chen, D. P. Shang, M. M. Li, Y. F. Xu, R. R. Jia, S. Yuan and L. Y. Shi, J Power Sources, 2019, 414, 31-40.
    246. S. Wang, X. Liu, A. L. Wang, Z. N. Wang, J. Chen, Q. H. Zeng, X. F. Wang and L. Y. Zhang, Polym Chem-Uk, 2018, 9, 4674-4682.
    247. C. Zuo, B. H. Zhou, Y. H. Jo, S. B. Li, G. Chen, S. Q. Li, W. Luo, D. He, X. P. Zhou and Z. G. Xue, Polym Chem-Uk, 2020, 11, 2732-2739.
    248. J. W. Zhang, S. J. Wang, D. M. Han, M. Xiao, L. Y. Sun and Y. Z. Meng, Energy Storage Mater, 2020, 24, 579-587.
    249. H. C. Wang, Q. Wang, X. Cao, Y. Y. He, K. Wu, J. J. Yang, H. H. Zhou, W. Liu and X. M. Sun, Adv Mater, 2020, 32, 2001259.
    250. C. Zuo, G. Chen, Y. Zhang, H. H. Gan, S. Q. Li, L. P. Yu, X. P. Zhou, X. L. Xie and Z. G. Xue, J Membrane Sci, 2020, 607, 118132.
    251. Z. Y. Wei, S. J. Chen, J. Y. Wang, Z. H. Wang, Z. H. Zhang, X. Y. Yao, Y. H. Deng and X. X. Xu, Journal of Materials Chemistry A, 2018, 6, 13438-13447.
    252. J. Shim, L. Kim, H. J. Kim, D. Jeong, J. H. Lee and J. C. Lee, Polymer, 2017, 122, 222-231.
    253. K. R. Deng, S. J. Wang, S. Ren, D. M. Han, M. Xiao and Y. Z. Meng, J Power Sources, 2017, 360, 98-105.
    254. J. Suk, Y. H. Lee, D. Y. Kim, D. W. Kim, S. Y. Cho, J. M. Kim and Y. Kang, J Power Sources, 2016, 334, 154-161.

    無法下載圖示 校內:不公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE