| 研究生: |
黃庭軒 Huang, Ting-Hsuan |
|---|---|
| 論文名稱: |
發展檢測藻類細胞含油量及藻種分離之微流體技術 Development of microfluidic techniques for microalgae cellular lipid quantification and strain separation |
| 指導教授: |
王翔郁
Wang, Hsiang-Yu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 84 |
| 中文關鍵詞: | 微流體流式細胞儀 、尼羅紅 、微藻 |
| 外文關鍵詞: | Microfluidic flow cytometry, Nile red, Microalgae |
| 相關次數: | 點閱:123 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在眾多生質柴油原料中,微藻具有高含油量且生長快速的優點,因此被視為未來最適合的生質柴油來源。然而,使用測量程序複雜且耗時的氣相層析法或克重法測量油量及篩選藻種,使得篩選過程相當費時。自1940年代建立了光學方式,利用Nile red分析微藻細胞內的含油量後,Nile red就被廣泛地運用在偵測細胞內的脂質體。然而,Nile red與油脂結合後散射出的螢光強度會被許多變數影響(例如:染色時間及樣品濃度),進而影響實驗結果的正確性。且傳統Nile red染色法並無法測得單細胞油量,提供篩選所需的資訊。微流體系統具有快速檢測與可準確控制變數的優點,因此本研究致力於發展快速且準確分析微藻細胞內油含量及篩選的技術。
本研究使用Chlorella vulgaris(小球藻)來進行油量測量,首先利用二維聚焦微流體流式細胞儀測量其被Nile red染色後的螢光強度,其檢測的速率可達1000 細胞/分鐘。然而,藉由染色後的平均細胞螢光強度與油含量比較,發現訊號強度並不隨著油量增加而有明顯的線性關係。為了避免微藻細胞通過偵測區時,因z軸位置上的不同造成的誤差,所以使用三維聚焦微流道做進一步檢測。並利用螢光染劑與螢光粒子測試三維微流體流式細胞儀聚焦效果。進行油量測量實驗後發現,染劑吸附所造成的背景過高,以致無法正確判別訊號。本研究的最後,利用三維微流體流式細胞儀中產生的離心力分離不同大小與形狀的小球藻與柵藻。
Among various sources of biodiesels, microalgae have high lipid contents and fast growth rate; therefore, they have been considered promising candidates. However, conventional methods for screening and measuring lipid amounts such as gas chromatograph and gram measurement are often complex or time consuming. An optical method that uses Nile red to analyze the lipid abundance inside cells was established in 1940. Since then, Nile red has been extensively applied to detect lipid bodies inside cells. However, the induced fluorescence intensity varies with the labeling durations or concentrations of reagents. It is challenging to find a universal correlation for lipid amounts and the fluorescence intensity. Additionally, conventional ensemble detection could not measure signal from single microalgae cell. Single cell information provides fundamentals for the screening of biological samples. Microfluidic devices provide advantages such as precisely controlled reaction parameters, high throughput and single cell analysis. Therefore, this study focused on developing a rapid and straightforward analysis for measuring the neutral lipid abundance inside microalgae and for cell screening using microfluidic systems.
Microalgae (Chlorella vulgaris) containing different lipid abundances were first analyzed using two-dimensional focusing cytometry and the throughput can be as high as 1000 cells/min. However, the signal intensity from microalgae did not increase proportionally with the lipid abundance. We subsequently used a three-dimensional focusing cytometry to prevent the signal shift due to the variation of sample positions in the z-direction. The three-dimensional focusing was demonstrated using fluorescein solution and fluorescent microbeads. Although the three-dimensional focusing was achieved, Nile red adsorbed on PDMS surface and caused a high floor of noise. The poor signal-to-noise ratio prevented us from further investigation of the relationship between signal intensities and lipid amounts. In the last part of this study, we used the three-dimensional focusing flow cytometry to separate microalgae that have different sizes and shapes.
1. Krawczyk, T., Biodiesel-Alternative Fuel Makes Inroads but Hurdles Remain. Inform, 1996. 7(8): p. 801-815.
2. Demirba, A., Biodiesel Fuels from Vegetable Oils Via Catalytic and Non-Catalytic Supercritical Alcohol Transesterifications and Other Methods: A Survey. Energy Conversion and Management, 2003. 44(13): p. 2093-2109.
3. Meher, L., Vidya Sagar, D., and Naik, S., "Technical Aspects of Biodiesel Production by Transesterification--a Review. "Renewable and Sustainable Energy Reviews, 2006. 10(3): p. 248-268.
4. Noureddini, H., Gao, X., and Philkana, R., Immobilized Pseudomonas Cepacia Lipase for Biodiesel Fuel Production from Soybean Oil. Bioresource Technology, 2005. 96(7): p. 769-777.
5. Nie, K., et al., Lipase Catalyzed Methanolysis to Produce Biodiesel: Optimization of the Biodiesel Production. Journal of Molecular Catalysis B: Enzymatic, 2006. 43(1-4): p. 142-147.
6. Saka, S. and Kusdiana, D., Biodiesel Fuel from Rapeseed Oil as Prepared in Supercritical Methanol. Fuel, 2001. 80(2): p. 225-231.
7. Yin, J.-Z., Xiao, M., and Song, J.-B., Biodiesel from Soybean Oil in Supercritical Methanol with Co-Solvent. Energy Conversion and Management, 2008. 49(5): p. 908-912.
8. Han, H., Cao, W., and Zhang, J., Preparation of Biodiesel from Soybean Oil Using Supercritical Methanol and Co2 as Co-Solvent. Process biochemistry, 2005. 40(9): p. 3148-3151.
9. Cohen, Z., Norman, H., and Heimer, Y., Microalgae as a Source of Omega 3 Fatty Acids. World review of nutrition and dietetics, 1995. 77: p. 1.
10. Chisti, Y., Biodiesel from Microalgae. Biotechnology Advances, 2007. 25(3): p. 294-306.
11. Xu, H., Miao, X., and Wu, Q., High Quality Biodiesel Production from a Microalga Chlorella Protothecoides by Heterotrophic Growth in Fermenters. Journal of Biotechnology, 2006. 126(4): p. 499-507.
12. Huang, G., et al., Biodiesel Production by Microalgal Biotechnology. Applied Energy, 2010. 87(1): p. 38-46.
13. The Unique Structure of the Tiny Green Cell.
14. Li, Y., et al., Effects of Nitrogen Sources on Cell Growth and Lipid Accumulation of Green Alga Neochloris Oleoabundans. Applied microbiology and biotechnology, 2008. 81(4): p. 629-636.
15. Alonzo, F. and Mayzaud, P., Spectrofluorometric Quantification of Neutral and Polar Lipids in Zooplankton Using Nile Red. Marine chemistry, 1999. 67(3-4): p. 289-301.
16. Fischer, G.A. and Kabara, J.J., Simple, Multibore Columns for Superior Fractionation of Lipids* 1. Analytical Biochemistry, 1964. 9(3): p. 303-309.
17. Metcalfe, L., Schmitz, A.A., and Pelka, J., Rapid Preparation of Fatty Acid Esters from Lipids for Gas Chromatographic Analysis. Analytical Chemistry, 1966. 38(3): p. 514-515.
18. Van Wijngaarden, D., Modified Rapid Preparation of Fatty Acid Esters from Lipids for Gas Chromatographic Analysis. Analytical Chemistry, 1967. 39(7): p. 848-849.
19. Eder, K., Gas Chromatographic Analysis of Fatty Acid Methyl Esters. Journal of Chromatography B: Biomedical Sciences and Applications, 1995. 671(1-2): p. 113-131.
20. Huang, G.-H., Chen, G., and Chen, F., Rapid Screening Method for Lipid Production in Alga Based on Nile Red Fluorescence. Biomass and Bioenergy, 2009. 33(10): p. 1386-1392.
21. Chen, W., et al., A High Throughput Nile Red Method for Quantitative Measurement of Neutral Lipids in Microalgae. Journal of Microbiological Methods, 2009. 77(1): p. 41-47.
22. Elsey, D., et al., Fluorescent Measurement of Microalgal Neutral Lipids. Journal of Microbiological Methods, 2007. 68(3): p. 639-642.
23. Judson, P.L. and Van Le, L., Flow Cytometry. Primary Care Update for OB/GYNS, 1997. 4(3): p. 87-91.
24. Moldavan, A., Photo-Electric Technique for the Counting of Microscopical Cells. Science, 1934. 80(2069): p. 188.
25. Díaz, M., et al., Application of Flow Cytometry to Industrial Microbial Bioprocesses. Biochemical Engineering Journal, 2010. 48(3): p. 385-407.
26. King, M.A., Detection of Dead Cells and Measurement of Cell Killing by Flow Cytometry. Journal of Immunological Methods, 2000. 243(1-2): p. 155-166.
27. Yanpaisan, W., King, N.J.C., and Doran, P.M., Flow Cytometry of Plant Cells with Applications in Large-Scale Bioprocessing. Biotechnology Advances, 1999. 17(1): p. 3-27.
28. Premazzi, G., Buonaccorsi, G., and Zilio, P., Flow Cytometry for Algal Studies. Water Research, 1989. 23(4): p. 431-442.
29. Kricka, L.J., Miniaturization of Analytical Systems. Clinical chemistry, 1998. 44(9): p. 2008.
30. Jones, S.W., Photolithography. IC Knowledge LLC: Georgetown, MA, 2000.
31. Duffy, D.C., et al., Rapid Prototyping of Microfluidic Systems in Poly(Dimethylsiloxane). Analytical Chemistry, 1998. 70(23): p. 4974-4984.
32. Sakamoto, C., et al., Rapid Quantification of Bacterial Cells in Potable Water Using a Simplified Microfluidic Device. Journal of Microbiological Methods, 2007. 68(3): p. 643-647.
33. Watkins, N.N., et al., A Microfabricated Electrical Differential Counter for the Selective Enumeration of Cd4+ T Lymphocytes. Lab Chip, 2011.
34. Tsutsui, H. and Ho, C.-M., Cell Separation by Non-Inertial Force Fields in Microfluidic Systems. Mechanics Research Communications, 2009. 36(1): p. 92-103.
35. Inglis, D.W., et al., Determining Blood Cell Size Using Microfluidic Hydrodynamics. Journal of Immunological Methods, 2008. 329(1-2): p. 151-156.
36. Chen, H.-h., et al., Development of a Microfluidic Device for Determination of Cell Osmotic Behavior and Membrane Transport Properties. Cryobiology, 2007. 55(3): p. 200-209.
37. Lee, M.G., Choi, S., and Park, J.K., Three-Dimensional Hydrodynamic Focusing with a Single Sheath Flow in a Single-Layer Microfluidic Device. Lab Chip, 2009. 9(21): p. 3155-3160.