| 研究生: |
廖烱峯 Liao, Chiung-Feng |
|---|---|
| 論文名稱: |
主鏈含DSB衍生物之聚芴高分子的合成及其在白光元件的應用 The Synthesis and Optoelectronic Properties of Copolyfluorene Containing Distyrylbenzene Derivative and It’s Application in White Light-Emitting Devices |
| 指導教授: |
陳雲
Chen, Yun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 英文 |
| 論文頁數: | 84 |
| 中文關鍵詞: | 導電高分子 、聚芴高分子 、白光元件 |
| 外文關鍵詞: | Copolyfluorene, Conjugated polymers, White light-emitting device |
| 相關次數: | 點閱:82 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究採用兩種具有高發光效率之材料1,4-二苯乙烯苯(1,4-distyrylbenzene)及聚芴高分子作為PLED元件發光層材料,我們將具有強拉電子性的羫基官能基導入1,4-二苯乙烯苯(1,4-distyrylbenzene)單體中,改變其發光波長和減少其能障以利電子注入。利用Suzuki聚合反應合成一系列主鏈含1,4-二苯乙烯苯(1,4-distyrylbenzene)衍生物(GM)之聚芴高分子作為藍綠光發光材料。這些高分子可溶於一般有機溶劑,如甲苯、氯仿等,並且具有大於400°C的熱裂解溫度。在PL光譜上同時出現兩個發光峰顯示高分子間內具有有效的能量轉移。由循環伏安法(CV)求得高分子的HOMO與LUMO能階。GM擁有較小的能階而在高分子鏈中變成載子捕捉中心。而在電激發光元件中,元件性質隨著GM單體在高分子鏈上的濃度增加而提升,且元件發光顏色隨著共聚比例不同而改變,隨著共聚比例增加,C.I.E.色度座標由(0.18,0.15)位移至(0.35,0.56)。另外將PFG1和PFG2高分子和Ir(piq)2(acac)做掺混製作白光元件,PFG2掺混低比例之Ir(piq)2(acac),白光元件的亮度和C.I.E.色度坐標分別為4116 cd/m2 和 (0.31, 0.28)。
Polymer light-emitting diodes (PLEDs) based on fluorescent and phosphorescent electroluminescence (EL) have attracted great attention currently, and been extensively investigated. In this study, a series of copolyfluorenes (PFG1~PFG4) containing 2,5-dihexyloxy-1,4-bis{2-(4'-bromophenyl)-2-cyanovinyl}benzene (GM) were synthesized by Suzuki coupling reaction. The optical, thermal and electrochemical properties of PFG copolymers were almost identical to polyfluorene (PF) due to the quite low proportion of GM units in polymer chain. However, The electroluminescent (EL) spectra of the PFG copolymers are very different from photoluminescent (PL) spectra. The green emission (520 nm) in EL spectra are much stranger than those in PL spectra, which can be partially attributed to energy transfer from fluorene segments to GM segments. In addition, the GM units act as charge trapping sites because of its smaller band gap (2.51 eV), and it's indicated that charge trapping is another emission mechanism in EL process. The performance of EL devices [ITO/PEDOT:PSS/polymer/Ca(50 nm)/Al(100 nm)] were improved with an increase in GM content in polymer chain. The PFG4 devices have the best performance (6794 cd/m2, 1.69 cd/A), and the PFG1 and PFG2 exhibited the similar intensity of blue and green emission. Therefore, we fabricated the White LED device by blending PFG2 with a red iridium complex, Ir(piq)2(acac). By carfully controlling the amount of the iridium complex, the WPLED device was achieved with the brightness and CIE coordinate were 4116 cd/m2 and (0.31, 0.28), respectively.
[1] M. Pope, H. P. Kallmann, P. Magnante, J. Chem. Phys., 38, 2042 (1963).
[2] W. Helfrich, W. G. Schneider, Phys. Rev. Lett., 14 (1965).
[3] G. Gustafsson, Y. Cao, G. M. Treacy, F. Klavetter, N. Colaneri, A. J. Heeger, Nature, 357, 477 (1992).
[4] C. W. Tang, S. A. Vanslyker, Appl. Phys. Lett., 51, 913 (1987).
[5] C. W. Tang, S. A. VanSlyke, C. H. Chen, J. Appl. Phys., 65, 3610 (1989).
[6] J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, A. B. Holmes, Nature, 347, 539 (1990).
[7] M. A. Baldo, D. F. O’Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, S. R. Forrest, Nature, 395, 151 (1998).
[8] M. A. Baldo, S. Lamansky, P. E. Thompson, S. R. Forrest, Appl. Phys. Lett., 75, 4 (1999).
[9] S. Lamansky, P. Djurovich, D. Murphy, F. Abdel-Razzaq, H.-E. Lee, C. Adachi, P. E. Burrows, S. R. Forrest, M. E. Thompson, J. Am. Chem. Soc., 123, 4304 (2001).
[10] A. Köhler, J. S. Wilson, R. H. Friend, Adv. Mater., 14, 701 (2002).
[11] A. Köhler, J. Wilson, Org. Electron., 4, 179 (2003).
[12] M. A. Baldo, D. F. O’Brien, M. E. Thompson, S. R. Forrest, Phys. Rev. B, 60, 14422 (1999).
[13] J. S. Wilson, A. S. Dhoot, A. J. A. B. Seeley, M. S. Khan, A. Köhler, R. H. Friend, Nature, 413, 828 (2001).
[14] M. Segal, M. A. Baldo, R. J. Holmes, S. R. Forrest, Z. G. Soos, Phys. Rev. B: Condens. Matter., 68, 075211 (2003).
[15] M. Reufer, M. J. Walter, P. G. Lagoudakis, A. B. Hummel, J. S. Kolb, H. G. Roskos, U. Scherf, J. M. Lupton, Nat. Mater., 4, 340 (2005).
[16] J. Kido, K. Nagai, Y. Ohashi, Chem. Lett., 657 (1990).
[17] R. C. Kwong, S. Sibley, T. Dubovoy, M. Baldo, S. R. Forrest, M. E. Thompson, Chem. Mater., 11, 3709 (1999).
[18] E. Holder, B. M. W. Langeveld, U. S. Schubert, Adv. Mater., 17, 1109 (2005).
[19] C. Adachi, M. A. Baldo, M. E. Thompson, S. R. Forrest, J. Appl. Phys., 90, 5048 (2001).
[20] V. Cleave, G. Yahioglu, P. Le Barny, D.-H. Hwang, A. B. Holmes, R. H. Friend, N. Tessler, Adv. Mater., 13, 44 (2001).
[21] P. A. Lane, L. C. Palilis, D. F. O’Brien, C. Giebeler, A. J. Cadby, D. G. Lidzey, A. J. Campbell, W. Blau, D. D. C. Bradley, Phys. Rev. B, 63, 235206 (2001).
[22] C. Adachi, S. Tokito, T. Tsutsui, S. Saito, Jpn. J. Appl. Phys., 27, 269 (1988).
[23] C. Adachi, T. Tsutsui, S. Saito, Appl. Phys. Lett., 55, 1489 (1989).
[24] J. Kido, M. Khoda, K. Okuyama, K. Nagai, Appl. Phys. Lett., 61, 761 (1992).
[25] J. Kido, K. Hongavwa, M. Khoda, K. Nagai, K. Okuyama, Jpn. J. Appl. Phys., 31, 960 (1992).
[26] D. Dini, Chem. Mater., 17, 1933 (2005).
[27] A. Kraft, A. Grimsdale, A. Holmes, Angew. Chem. Int. Ed. 37, 402 (1998).
[28] Y. Yang, Q. Pei, Appl. Phys. Lett., 81, 3294 (1997).
[29] G. Klaerner, R. D. Miller, Macromolecules, 31, 2007 (1998).
[30] M. Kreyenschimdt, G. Klaerner, T. Fuhrer, J. Ashenhurst, S. Karg, W. Chen, V. Y. Lee,
J. C. Scott, R. D. Miller. Macromolecules, 31, 1099 (1998).
[31] G. Kla¨rner, M. H. Davey, W. D. Chen, J. C. Scott, R. D. Miller, Adv Mater 10, 993 (1998)
[32] V. N. Bliznyuk, S. A. Carter, J. C. Scott, G. Kla¨rner, R. D. Miller, Macromolecules,
32, 361 (1999)
[33] D. D. C. Bradley, M. Grell, A. Grice, A. R. Tajbakhsh, D. F. O’Brien, A. Bleyer, Opt Mater, 9, 1 (1998).
[34] X. Long, M. Grell, A. Malinovski, D. D. C. Bradley, M. Inbasekaran, E. P. Woo, Opt Mater, 9, 70 (1998).
[35] C. Liu, W. L. Yu, Y. H. Lai, W. Huang, Chem. Mater., 13, 984 (2001).
[36] M. Inbasekaran, E. P. Woo, W. Wu, M. Bernius, L. Wujkowski, Synth. Met., 111, 397 (2000).
[37] X. Zhan, Y. Liu, D. Zhu, W. Huang, Q. Gong, Chem. Mate.r, 13:1540 (2001).
[38] J. Ding, M. Day, G. Robertson, J. Roovers, Macromolecules, 35:3474 (2002).
[39] J.-I. Lee, G. Klärner, R. D. Miller, Chem. Mater., 11, 1083 (1999).
[40] N. G. Pschirer, K. Byrd, U. H. F. Bunz, Macromolecules, 34, 8590 (2001).
[41] C. Y. Chunag, P. I. Shih, C. H. Chien, F. I. Wu, C. F. Shu, Macromolecules, 40, 247 (2007).
[42] Miyaura, N.; Suzuki, A. Chem. Commun,. 866 (1979)
[43] A. Suzuki, Pure Appl. Chem., 63, 419 (1991).
[44] S. Janietz, D. Bradley, M. Grell, M. Inbasekaran. E. P. Woo, Appl. Phys. Lett., 73, 2453 (1998).
[45] M. Logdlund, W. R. Salaneck, F. Meyers, J. L. Bredas, G. A. Arbuckle, R. H. Friend, A. B. Holmes, G. Froyer, Macromolecules, 26, 3815 (2003).
[46] M. A. Baldo, M. E. Thompson, S. R. Forrest, Nature, 403, 750 (2000).
[47] T. Sajoto, P. I. Djurovich, A.Tamayo, M. Yousufuddin, R. Bau, M. E. Thompson, Inorg. Chem., 44, 7992 (2005)
[48] X. Gong, J. C. Ostrowski, G. C. Bazan, D. Moses, A. J. Heeger, M. S. Liu, A. K.-Y. Jen, Adv. Mater., 15, 45 (2003).
[49] J. Liu, Z. Y. Xie, Y. X. Cheng, Y. H. Geng, L. X. Wang, X. B. Jing, F. S. Wang, Adv Mater.,19, 531 (2007).
[50] J. Luo, Z.X. Li, Q. Hou, J. B. Peng, W. Yang, Y. Cao, Adv. Mater., 19, 1113 (2007).
[51] M. Granström, O. Inganäs, Appl. Phys. Lett., 68, 147 (1996).
[52] I. Tanaka, M. Suzuki, S. Tokoto, Jpn. J. Appl. Phys. Part 1, 42, 2737 (2003).
[53] X. Gong, S. H. Lim, J. C. Ostrowski, D. Moses, C. J. Bardeen, G. C. Bazan, J. Appl. Phys., 95, 948 (2004).
[54] Y. H. Xu, R. Guan, J. X. Jiang, W. Yang, H. Y. Zhen, J. B. Peng, Y. Cao, J. Polym. Sci Part. A: Polym. Chem., 46, 453 (2008).
[55] T. H. Kim, H. K. Lee, O. O. Park, B. D. Chin, S. H. Lee, J. K. Kim, Adv. Funct. Mater., 16, 611 (2006).
[56] D. Oelkrug, A. Tompert, J. Gierschner, H. J. Egelhaaf, M. Hanack, M. Hohloch, E. Steinhuber, J. Phys. Chem. B, 102, 1902 (1998).
[57] N. S. Cho, D. H. Hwang, J. I. Lee, B. J. Jung, H. K. Shim, Macromolecules, 35, 1224 (2002).
[58] N. S. Cho, D. H. Hwang, B. J. Jung, E. Lim, H. K. Shim, Macromolecules, 37, 5265 (2004).
[59] J. R. Lakowicz, “Principles of Fluorescence Spectroscopy”, 2nd ed., Kluwer Academic/ Plenum, New York, 1999, chapter 1.
[60] D. A. Skoog, F. J. Holler, T. A. Nieman, “Principles of Instrumental Analysis”, 5th ed., Saunders Golden Sunburst Series, 1998, chapter 15.
[61] M. Segal, M. A. Baldo, R. J. Holmes, S. R. Forrest, Z. G. Soos, Phys. Rev. B, 68, 075211 (2003).
[62] R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. Dos Santos, J. L. Brédas, M. Lögdlund and W. R. Salaneck, Nature, 397, 121(1999).
[63] Z. H. Kafafi, “Organic Electroluminescence”, US Naval Research Lab, Washington, DC, USA, 2005, p.276.
[64] V. May, O. Kuhn, “Charge and Energy Transfer Dynamics in Molecular Systems”, 2nd ed., Wiley-VCH, 2003, chapter 8.
[65] S. H. Chen, “The Synthesis and Optoelectronic Properties of Electroluminescent Polymers Consisting of Hole- and Electron-Transporting Segments”, Doctoral Dissertation, National Cheng Kung University, 2006.
[66] 陳金鑫; 黃孝文 “有機電激發光材料與元件”, 五南, 2005
[67] H. Yersin, Highly “Efficient OLEDs with Phosphorescent Materials”, 1st ed., Wiley-Interscience, 2008, chapter 8.
[68] E. F. Schubert, “Light-Emitting Diodes”, 1st ed., Cambridge University Press, 2003, chapter 11.
[69] D. W. Roger, “Computational Chemistry Using the PC”, 3rd ed., Wiley-Interscience, 2003, chapter 3.
[70] (a) http://en.wikipedia.org/wiki/Computational_chemistry (b) http://www.ym. edu.tw/~sysheu/summer/5-ST-MMFF-2005.pdf
[71] T. Y. Wu, Y. Chen, J. Polym. Sci Part. A: Polym. Chem., 40, 4570 (2002).
[72] Hanack, M.; Behnisch, B.; Häckl, H.; Martinez-Ruiz, P.; Schweikart, K. H. Thin Solid Films, 417, 26 (2002).
[73] N. S. Cho, D. H. Hwang, B. J. Jung, E. Lim, H. K. Shim, Macromolecules, 37, 5265 (2004).
[74] D. Oelkrug, A. Tompert, J. Gierschner, H. J. Egelhaaf, M. Hanack, M. Hohloch, E. Steinhuber, J. Phys. Chem. B, 102, 1902 (1998).
[75] Chen, Y.; Hwang, S. W.; Yu, Y. H. Polymer, 44, 3827 (2003).
[76] P. A. Lane, L. C. Palilis, D. F. O’Brien, C. Giebeler, A. J. Cadby, D. G.. Lidzey, A. J. Campbell, W. Blau, D. D. C. Bradley, Phys. Rev. B, 63, 235206 1 (2002).
[77] X. Gong, J. C. Ostrowski, D. Moses, G.. C. Bazan, A. J. Heeger, Adv. Funct. Mater., 13, 439 (2003).