簡易檢索 / 詳目顯示

研究生: 黃俊昇
Huang, Chun-Sheng
論文名稱: 吡嗪、吡啶和哌嗪雙性衍生物做為封裝材料中潛含性觸媒之研究
Amphiphatic Pyrazine, Pyridine and Piperazine Derivaties as the Thermal Latency for Epoxy-Phenolic Resins
指導教授: 葉茂榮
Yeh, Mou-Yung
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 91
中文關鍵詞: 雙性觸媒潛含性觸媒吡啶哌嗪吡嗪環氧樹脂
外文關鍵詞: thermal latent catalysts, amphiphatic catalysts, pyridine, piperazine, pyrazine, epoxy-phenolic resins
相關次數: 點閱:82下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 以有機羧酸官能基修飾的pyrazine(吡嗪)、pyridine(吡啶)、piperazine(哌嗪)衍生物,具有酸鹼兩種特性,故此系列雙性分子18-23經評估可作為促使DGEBA (Diglycidylether of bisphenol A)環氧樹脂高分子化的有機共軛酸鹼型潛含性觸媒,可用於誘導樹脂的交聯聚合反應,並加以探討觸媒於環氧樹脂中的熱潛含性及儲存性。本實驗探討的結果和陽離子型的熱潛含性觸媒BHP (3,N-benzylpyrazinium hexafluoroantimonate)加以比較,由黏度測試証明有機羧酸官能基修飾的pyrazine、pyridine、piperazine衍生物做為潛含性觸媒具有較佳的儲存時間,從活化能以及黏度測試一致性的結果得知觸媒潛含性大小為piperazine-2-carboxylic acid (22) > 3-aminopyrazine-2-carboxylic acid (20) > 3-piperazin-1-yl-propionic acid (23) > 2-pyrazinecarboxylic acid (18) > picolinic acid (21) > 2,3-pyrazinedicarboxylic acid (19)。比較陽離子型潛含性觸媒BPH的物理特性,如活化能,放熱值及黏度儲存時間得知2-pyrazinecarboxylic acid (18), piperazine-2-carboxylic acid (22), and 3-piperazin-1-yl-propionic acid (23)對促使DGEBA環氧樹脂高分子化為較佳的潛含性觸媒,此外,由轉化率的結果得知觸媒3、18、19、20可在特定的小溫度區間快速誘導樹脂進行交聯聚合反應,使用雙性的pyrazine(吡嗪)、pyridine(吡啶)、以及 piperazine(哌嗪)的羧酸衍生物做為觸媒,催化使環氧樹脂硬化後之玻璃轉移溫度(Tg)介於52-82 °C 之間,其中觸媒3-aminopyrazine-2-carboxylic acid (20) 催化交聯後樹脂的玻璃轉移溫度為82 °C與BHP (3,N-benzylpyrazinium hexafluoroantimonate) 催化交聯後樹脂的玻璃轉移溫度85 °C較為相近。

    Novel amphiphatic piperazine, pyrazine, and pyridine compounds were evaluated as thermal latent catalysts for the polymerization of diglycidyl ether of bisphenol A (DGEBA). Amphiphatic piperazine, pyrazine, and pyridine compounds 18-23 were used to cure epoxy resin systems to investigate their thermal latency and storage stability. Cationic latent thermal BHP (3, N-benzylpyrazinium hexafluoroantimonate) was investigated as model reaction of epoxy resin systems with respect to the thermal latency and storage stability of the amphiphatic piperazine, pyrazine, and pyridine derivatives catalysts. To characterize the viscosity-storage time, amphiphatic piperazine, pyrazine, and pyridine compounds were indicated to exhibit good toexcellent latency properties at room temperature. Results from the cure activation energy and the viscosity-storage time of the catalysts, the order of thermally latent activity was piperazine-2-carboxylic acid (22) > 3-aminopyrazine-2-carboxylic acid (20) > 3-piperazin-1-yl-propionic acid (23) > 2-pyrazinecarboxylic acid (18) > picolinic acid (21) > 2,3-pyrazinedicarboxylic acid (19). In comparison of physical properties including the cure activation energy, exothermic heats and viscosity-storage time with cationic latent catalyst N-benzylpyrazinium hexafluoroantimonate (BPH, 3) as the standard compounds, 2-pyrazinecarboxylic acid (18), piperazine-2-carboxylic acid (22), and 3-piperazin-1-yl-propionic acid (23) revealed better the curing reactivity and the thermal latency for polymerization of epoxy resin. From the conversions results, catalysts 3,18-20 rapidly rose at specific and narrow temperature ranges. Concerning the glass transition temperature (Tg), the use of amphiphatic pyrazine, pyridine, and piperazine catalysts 18-23 indicate that complete or near complete curing systems were obtained in the range of about 52-82 °C, 3-aminopyrazine-2-carboxylic acid (82 °C, 20) was similar to N-benzylpyrazinium hexafluoroantimonate (85 °C, 3, BHP).

    目 錄 頁次 第一章 緒 論......................................................................................................................1 1-1 前言................................................................................................................................1 1-2 電子封裝技術...............................................................................................................1 1-3 封裝材料的組成.........................................................................................................14 1-3-1環氧樹脂...................................................................................................................16 1-3-2環氧樹脂的硬化劑...................................................................................................21 1-3-3觸媒............................................................................................................................23 1-3-4填充料........................................................................................................................32 1-3-5偶合劑........................................................................................................................33 1-3-6脫模劑........................................................................................................................33 1-3-7著色劑........................................................................................................................33 第二章 結果與討論...........................................................................................................34 2-1 環氧樹脂的選擇..........................................................................................................34 2-2 研究動機.......................................................................................................................35 2-3 Pyrazine和Piperazine潛含性觸媒分子之合成結果..................................................36 2-4 觸媒pH值之測量.........................................................................................................40 2-5 黏度測試......................................................................................................................42 2-6 差示熱分析測試 (differential thermometry analysis,TG/DTA)...............................55 2-7 活化能測試..................................................................................................................72 2-8 玻璃轉移溫度 (Tg)測試.............................................................................................75 2-9 反應轉化率計算.........................................................................................................78 第三章 結論.......................................................................................................................80 第四章 實驗部份...............................................................................................................82 4-1 實驗用藥品..................................................................................................................82 4-2 實驗使用儀器..............................................................................................................84 4-3 合成步驟及光譜資料.................................................................................................85 參考文獻.............................................................................................................................89 表目錄 頁次 表1- 1常見的IC元件...............................................................................................................11 表1- 2半導體封裝材料組成與功能......................................................................................15 表1- 3特殊環氧樹脂硬化物之物性......................................................................................17 表1- 4陳坤隆學長研究imidazole潛含性觸媒名稱..............................................................30 表1- 5林俊民學長研究imidazole共軛酸鹼潛含性觸媒名稱 ............................................32 表2- 1觸媒18-23 於去離子水中之pH值...............................................................................41 表2-2 Brook Field DV-II+ Pro黏度計的各種Spindle測量黏度範圍...................................43 表2-3環氧樹脂與觸媒BPH、18-25黏度起始時間點、600小時.......................................49 表2-4環氧樹脂添加5、10、15和20 wt%觸媒 18、19、20、21之差示熱分析數據......63 表2-5環氧樹脂添加5、10、20、30 wt%觸媒22、23之差示熱分析數據.......................69 表2-6 依Kissinger公式得到膠化活化能...............................................................................74 表2-7觸媒18-25 (10 wt%)與環氧樹脂混合之熱分析相關性質.........................................76 圖目錄 頁次 圖1- 1 塑膠雙列式構裝..............................................................................................................................4 圖1- 2 IC元件構造圖..................................................................................................................................6 圖1- 3 IC製造流程.......................................................................................................................................7 圖1- 4電子晶片從設計到產品應用之製造..............................................................................................8 圖1- 5電子晶片封裝程序...........................................................................................................................8 圖1- 6 輕薄短小為電子構裝需求之趨勢...............................................................................................10 圖1- 7 應用在封裝材料常見的環氧樹脂...............................................................................................18 圖1- 8 較特殊的環氧樹脂........................................................................................................................19 圖1- 9胺類與環氧樹脂的反應.................................................................................................................21 圖1- 10酸酐與環氧樹脂的反應...............................................................................................................21 圖1- 11酚類與環氧樹脂的反應...............................................................................................................22 圖1- 12 TPP.................................................................................................................................................23 圖1- 13 imidazole.........................................................................................................................................23 圖1- 14 Benzoxazine潛含性觸媒..............................................................................................................24 圖1- 15 N-Benzylpyrazinium hexafluoroantimonate潛含性觸媒 .............................................................25 圖1-16 Imidazole環內N上的H互變異構..................................................................................................26 圖1-17 Wang, L.和Wong, C. P.所研究的潛含性觸媒............................................................................26 圖1-18具立體障礙之imidazole與環氧樹脂反應機構............................................................................27 圖1-19金屬路易士酸觸媒活化現象........................................................................................................28 圖1-20陳坤隆學長研究imidazole潛含性觸媒結構................................................................................29 圖1-21林俊民學長研究imidazole共軛酸鹼的潛含性觸媒....................................................................32 圖2-1 Diglycidylether of bisphenol A環氧樹脂..........................................................................................34 圖2-2 BPH潛含性觸媒與環氧樹脂之反應機構.....................................................................................35 圖2-3實驗所研究之潛含性觸媒..............................................................................................................36 圖2-4 Brook Field DV-II+ Pro黏度計........................................................................................................43 圖2-5空白實驗與觸媒BPH、18-23之黏度量測 ....................................................................................47 圖2-6 Pyrazine系列觸媒18、觸媒19及觸媒20.......................................................................................56 圖2-7環氧樹脂添加5、10、15、20 wt% 2-Pyrazinecarboxylic acid (18)之差示熱分析圖................56 圖2-8環氧樹脂添加5、10、15、20 wt% 2,3-Pyrazinedicarboxylic acid (19)之差示熱分析圖..........58 圖2-9環氧樹脂添加5、10、15和20 wt% 3-Aminopyrazine-2-carboxylic acid (20)之差示熱分析圖...............................................................................................................................................................60 圖2-10觸媒Picolinic acid (21)........................................................................................................................61 圖2-11環氧樹脂添加5、10、15和20 wt%觸媒Picolinic acid (21)之差示熱分析圖..............................62 圖2-12觸媒piperazine-2-carboxylic acid (22)、3-piperazin-1-yl-propionic acid (23).................................66 圖2-13環氧樹脂添加5、10、15和20 wt% Piperazine-2-carboxylic acid (22)之差示熱分析圖.............66 圖2-14環氧樹脂添加5、10、15和20 wt%的3-piperazin-1-yl-propionic acid (23)之差示熱分析圖......68 圖2-15 Compound 18-23活化能測定...........................................................................................................73 圖2-16環氧樹脂與10 wt%觸媒19、20、23以DSC第2次測量所得的Tg值............................................77 圖2-17環氧樹脂與10 wt%觸媒聚合反應之溫度轉化率..........................................................................78

    1.Buchanan, R. C. In Ceramic materials for electronics; M. Dekker: New York, 1986.

    2.Harper, C. A. In Electronic packaging and interconnection handbook, McGraw-Hill: New York, 1997.

    3.Ginsberg, G. In Electronic equipment packaging technology; Van Nostrand Reinhold: New York, 1992.

    4.Goosey, M. T. In Plastics for electronics; Kluwer Academic Publishers: Dordrecht, 1999.

    5.Godovsky, Y. K. In Speciality polymers/polymer physics; Springer Verlag: Berlin, 1989.

    6.Wong, C. P. In Polymers for electronic and photonic applications, Academic Press: Boston, 1993.

    7.Kimura, H.; Matsumoto, A.; Hasegawa, K.; Ohtsuka, K. J. Appl. Polym. Sci. 1998, 68, 1903.

    8.Kim, Y. C.; Park, S. J.; Lee, J. R. Polym. J. 1997, 29, 759.

    9.Hale, A.; Macosko, C.W.; Bair, H. E. J Appl Polym Sci. 1989, 38, 1253.

    10.Farkas, A.; Strohm, P.F. J Appl Polym Sci. 1968, 12, 159.

    11.Wang, S.; Wong, C.P. 1999 International Symposium on Advanced Packagig Materials. 1999, 67.

    12.Galego, N.; Gonzlez, F.; Vazquez, A. Polymer International. 1996, 40, 213.

    13.Scola, D. A., in Developments in Reinforced Plastics, Vol. 4, ed. G. Pritchard, 984, 165.

    14.Wang, S.; Wong, C.P. 1999 International Symposium on Advanced Packagig Materials. 1999, 67.

    15.Wong, F. F.; Chen, K.-L.; Lin, C.-M.; Yeh, M.-Y. J. Appl Polym Sci 2007, 104, 3292.

    16.Wong, F. F.;Lin, C.M.;Chen, K.- L.;Huang, J.-J. J Polym Sci Part A Polym Chem, submitting.

    17.Park, S. J.; Kang, J. G.; Kwon, S. H. Maromol Mater Eng. 2004, 289, 413.

    18.Lee, J. K.; Choi, Y. Marcromolecular Reserch. 2002, 10, 34.

    19.Park, S. J.; Kim, T. J.; Lee, J. K. J Appl Polym Sci B: Polym Phys. 2000, 38, 2114.

    20.Ellingson, R. C.; Henry, R. L. J. Am. Chem. Soc. 1949, 71, 2798-2800.

    21.Shuman, R. T.; Ornstein, P. J. Org. Chem. 1990, 55, 738-741.

    22.Harfenist, M. J. Am. Chem. Soc. 1954, 76, 4991-4993.

    23.Vogel,A.I. Vogel's text of practical organic chemistry, 5th edition,711-715.

    24.Hromatka, O.; Klink, R.; Sauter, F. Monatsh. Chem. 1962, 93, 1294.

    25.Kwak, G. H.; Park, S. J.; Lee, J. R. J. Appl. Polym. Sci. 2001, 81, 646.

    26.Park, S. J.; Seo, M. K.; Lee, J. R.; Lee, D. R. J. Polym. Sci. A: Polym. Chem. 2001, 39, 187.

    27.Kissinger, H. E. Anal. Chem. 1957, 29, 1702.

    28.Park, S. J.; Seo, M. K.; Lee, J. R.; Lee, D. R. J. Polym. Sci. A: Polym. Chem. 2001, 39, 187.

    29.Kissinger, H. E. Anal. Chem. 1957, 29, 1702.

    30.Tung. C. M.; Dynes, P. J. J. Appl. Polym. Sci. 1982, 27, 569.

    31.Nunez, L.; Nunez, M. R.;Villanueva, M.; Castro, A.; Rial, B. J. Appl. Polym.Sci. 2002, 85, 366.

    32.Galego, N.; Gonzlez, F. Polymer International.1996, 40, 213.

    33.Park, S. J.; Kim, H. C.; Lee, H. I.; Suh, D. H. Macromolecules 2001, 34, 7573.

    下載圖示 校內:2009-07-29公開
    校外:2009-07-29公開
    QR CODE