| 研究生: |
陳彥宏 Chen, Yan-Hong |
|---|---|
| 論文名稱: |
嵌入式多層奈米碳管之幾何非線性自然振動分析 Geometrically Nonlinear Free Vibration Analysis of an Embedded Multi-Walled Carbon Nanotube |
| 指導教授: |
吳致平
Wu, Chih-Ping |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 34 |
| 中文關鍵詞: | 基礎 、多層奈米碳管 、非局部Timoshenko梁理論 、Reissner混合變分理論 、凡德瓦爾互制力 、微分擬合法 |
| 外文關鍵詞: | Foundations, Multi-walled carbon nanotubes, Nonlinear vibration, Nonlocal Timoshenko beams, Reissner’s mixed variational theorem, Van der Waals interaction. |
| 相關次數: | 點閱:105 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文應用Reissner混合變分原理(RMVT)非局部Timoshenko梁理論(TBT)分析嵌入在彈性介質中的多層奈米碳管(MWCNT)之非線性自然振動。文中,考量嵌入式MWCNT的四種不同邊界條件,以及構成每對管壁之間的凡德瓦爾互制力的兩種不同模式,並且將MWCNT與周圍介質之間的互制力以Pasternak型基礎模擬之,亦將von Kármán幾何非線性效應納入各層控制方程和相關邊界條件之推衍。文中應用Eringen非局部彈性理論探討微小尺度效應,透過微分擬合法結合直接迭代法取得嵌入式MWCNT在最大模態出現撓曲時的基本自然振動頻率參數變化。數值範例結果顯示RMVT非局部TBT所得到頻率參數解收斂快速,其收斂解與文獻中之虛位移原理非局部Timoshenko梁理論的解析解和數值解相當吻合。
Based on the Reissner mixed variational theorem (RMVT), we present a nonlocal Timoshenko beam theory (TBT) for the nonlinear vibration analysis of multi-walled carbon nanotubes (MWCNT) embedded in an elastic medium. In this formulation, four different edge conditions of the embedded MWCNT are considered, two different models with regard to the van der Waals interaction between each pair of walls constituting the MWCNT are considered, and the interaction between the MWCNT and its surrounding medium is simulated using the Pasternak-type foundation. The governing equations of an individual wall and the associated boundary conditions are derived, in which the von Karman geometrical nonlinearity is considered. Eringen’s nonlocal elasticity theory is used to account for the effects of the small length scale. Variations of the lowest frequency parameters with the maximum modal deflection of the embedded MWCNT are obtained using the differential quadrature method in conjunction with a direct iterative approach. In the numerical examples, it is shown that solutions of the frequency parameters obtained using the current RMVT-based nonlocal TBT converge rapidly.
[1] S. Iijima, Helica microtubes of graphitic carbon, Nature 354 (1991) 56-58.
[2] A.C. Eringen, D.G.B. Edelen, On nonlocal elasticity, Int. J. Eng. Sci. 10 (1972) 1-16.
[3] A.C. Eringen, On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves, J. Appl. Phys. 54 (1983) 4703-4710.
[4] A.C. Eringen, Nonlocal Continuum Field Theories. Springer-Verlag, New York, 2002.
[5] M.A. Eltaher, M.E. Khater, S.A. Emam, A review on nonlocal elastic models for bending, buckling, vibrations, and wave propagation of nanoscale beams, Appl. Math. Modell. 40 (2016) 4109-4128.
[6] L. Behera, S. Chakraverty, Recent researches on nonlocal elasticity theory in the vibration of carbon nanotubes using beam models: A review, Arch. Comput. Methods Eng. (2016) DOI: 10.1007/s11831-016-9179-y.
[7] J.N. Reddy, Nonlocal theories for bending, buckling and vibration of beams, Int. J. Eng. Sci. 45 (2007) 288-307.
[8] J.N. Reddy, S.D. Pang, Nonlocal continuum theories of beams for the analysis of carbon nanotubes, J. Appl. Phys. 103 (2008) 023511.
[9] H.T. Thai, A nonlocal beam theory for bending, buckling, and vibration of nanobeams, Int. J. Eng. Sci. 52 (2012) 56-64.
[10] H.T. Thai, T.P. Vo, A nonlocal sinusoidal shear deformation beam theory with application to bending, buckling, and vibration of nanobeams, Int. J. Eng. Sci. 54 (2012) 58-66.
[11] M. Aydogdu, A general nonlocal beam theory: Its application to nanobeam bending, buckling and vibration, Physica E 41 (2009) 1651-1655.
[12] C.M. Wang, Y.Y. Zhang, S.S. Ramesh, S. Kitipornchai, Buckling analysis of micro- and nano-rods/tubes based on nonlocal Timoshenko beam theory, J. Phys. D: Appl. Phys. 39 (2006) 3904-3909.
[13] S.C. Pradhan, Nonlocal finite element analysis and small scale effects of CNTs with Timoshenko beam theory, Finite Elem. Anal. Des. 50 (2012) 8-20.
[14] R. Ansari, S. Sahmani, Small scale effect on vibrational response of single-walled carbon nanotubes with different boundary conditions based on nonlocal beam models, Commum. Nonlinear Sci. Numer. Simulat. 17 (2012) 1965-1979.
[15] L. Behera, S. Chakraverty, Application of differential quadrature method in free vibration analysis of nanobeams based on various nonlocal theories, Comput. Math. Appl. 69 (2015) 1444-1462.
[16] J.N. Reddy, Nonlocal nonlinear formulations for bending of classical and shear deformation theories of beams and plates, Int. J. Eng. Sci. 48 (2010) 1507-1518.
[17] J. Yang, L.L. Ke, S. Kitipornchai, Nonlinear free vibration of single-walled carbon nanotubes using nonlocal Timoshenko beam theory, Physica E 42 (2010) 1727-1735.
[18] L.L. Ke, Y. Xiang, J. Yang, S. Kitipornchai, Nonlinear free vibration of embedded double-walled carbon nanotubes based on nonlocal Timoshenko beam theory, Comput. Mater. Sci. 47 (2009) 409-417.
[19] C.Q. Ru, Axially compressed buckling of a doublewalled carbon nanotube embedded in an elastic medium, J. Mech. Phys. Solids 49 (2001) 1265-1279.
[20] L.A. Girifalco, R.A. Lad, Energy of cohesion, compressibility, and the potential energy functions of the graphite system, J. Chem. Phys. 25 (1956) 693-697.
[21] L.A. Girifalco, Interaction potential for C60 molecules, J. Phys. Chem. 95 (1991) 5370-5371.
[22] B. Fang, Y.X. Zhen, C.P. Zhang, Y. Tang, Nonlinear vibration analysis of double-walled carbon nanotubes based on nonlocal elasticity theory, Appl. Math. Modell. 37 (2013) 1096-1107.
[23] R. Ansari, H. Ramezannezhad, Nonlocal Timoshenko beam model for the large-amplitude vibrations of embedded multiwalled carbon nanotubes including thermal effects, Physica E 43 (2011) 1171-1178.
[24] E. Reissner, On a certain mixed variational theory and a proposed application, Int. J. Numer. Methods Eng. 20 (1984) 1366-1368.
[25] E. Reissner, On a mixed variational theorem and on a shear deformable plate theory, Int. J. Numer. Methods Eng. 23 (1986) 193-198.
[26] E. Carrera, An assessment of mixed and classical theories on global and local responses of multilayered orthotropic plates, Compos. Struct. 50 (2000) 183-198.
[27] E. Carrera, Assessment of theories for free vibration analysis of homogeneous and multilayered plates, Shock Vib. 11 (2004) 261-270.
[28] C.P. Wu, H.Y. Li, RMVT- and PVD-based finite layer methods for the quasi-3D free vibration analysis of multilayered composite and FGM plates, CMC-Comput. Mater. Con. 19 (2010) 155-198.
[29] C.P. Wu, Y.T. Chang, A unified formulation of RMVT-based finite cylindrical layer methods for sandwich circular hollow cylinders with an embedded FGM layer, Compos. Part B-Eng. 43 (2012) 3318-3333.
[30] C.P. Wu, W.W. Lai, Free vibration of an embedded single-walled carbon nanotube with various boundary conditions using the RMVT-based nonlocal Timoshenko beam theory and DQ method, Physica E 68 (2015) 8-21.
[31] X.Q. He, S. Kitipornchai, K.M. Liew, Buckling analysis of multi-walled carbon nanotubes: a continuum model accounting for van der Waals interaction, J. Mech. Phys. Solids 53 (2005) 303-326.
[32] X.Q. He, S. Kitipornchai, C.M. Wang, K.M. Liew, Modeling of van der Waals force for infinitesimal deformation of multi-walled carbon nanotubes treated as cylindrical shells, Int. J. Solids Struct. 42 (2005) 6032-6047.
[33] C.Q. Ru, Elastic models for carbon nanotubes, Encyclopedia Nanosci. Nanotechnol. X (2003) 1-14.
[34] C.M. Wang, V.B.C. Tan, Y.Y. Zhang, Timoshenko beam model for vibration analysis of multi-walled carbon nanotubes, J. Sound Vib. 294 (2006) 1060-1072.
[35] G. Cowper, The shear coefficient in Timoshenko’s beam theory, J. Appl. Mech. 33 (1966) 335-340.
[36] H. Du, M. Lim, R. Lin, Application of generalized differential quadrature method to structural problems, Int. J. Numer. Methods Eng. 37 (1994) 1881-1896.
[37] C.W. Bert, M. Malik, Differential quadrature: a powerful new technique for analysis of composite structures, Compos. Struct. 3 (1997) 179-189.
[38] C. P. Wu, C.Y. Lee, Differential quadrature solution for the free vibration analysis of laminated conical shells with variable stiffness, Int. J. Mech. Sci. 43 (2001) 1853-1869.
[39] H. Ehteshami, M.A. Hajabasi, Analytical approaches for vibration analysis of multi-walled carbon nanotubes modeled as multiple nonlocal Euler beams, Physica E 44 (2011) 270-285.
[40] A. Shakouri, R.M. Lin, T.Y. Ng, Free flexural vibration studies of double-walled carbon nanotubes with different boundary conditions and modeled as nonlocal Euler beams via the Galerkin method, J. Appl. Phys. 106 (2009) 094307.