| 研究生: |
吳思翰 Wu, Ssu-Han |
|---|---|
| 論文名稱: |
利用分子動力學研究可溶性貝它糊蛋白毒性與結構關係 Structure-neurotoxicity relationship of soluble amyloid-β globulomer using molecular dynamics simulations |
| 指導教授: |
黃吉川
Hwang, Chi-Chuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 63 |
| 中文關鍵詞: | 貝它糊蛋白 、阿茲海默症 、分子動力學 、寡聚體 、可溶性球聚體 |
| 外文關鍵詞: | amyloid beta, molecular dynamics, oligomer, soluble globulomer |
| 相關次數: | 點閱:128 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
貝它糊蛋白寡聚體被認為與阿茲海默症有很大的關聯。在前人研究中認為可溶性寡聚體毒性比纖維狀寡聚體更具毒性,因此本文中我們以分子動力學研究可溶性貝它糊蛋白球型寡聚體的結構與毒性關係。根據前人研究中認為可溶性球寡聚體會以二聚體為一個單元聚集成更大的寡聚體,且認為二聚體、四聚體、六聚體為中間態,十二聚體為穩定態。因此我們針對二聚體、四聚體、六聚體、十二聚體等四種聚集模型,將其置入水溶液中進行結構模擬與分析。研究結果顯示,二聚體在模擬過程中會有折疊現象,在C端與N端還是能保有大部分的Beta-sheet結構。在各寡聚體比較中發現十二聚體均方根誤差、迴轉半徑、都比中間態的寡聚體振動幅度較小能量也較低,平均氫鍵數較多。因此我們認為相較於其他寡聚體,十二聚體是最穩定且最具神經毒性的寡聚體。
The assembly of amyloid beta (Aβ) protein into oligomers is linked to Alzheimer’s disease. In this study, structure-neurotoxicity relationship of soluble Aβ globulomer was performed using molecular dynamics simulations. According to previos research suggest that souble globular oligomers contains a peptide dimer-repeating unit, and then dimer, tetramer and hexamer were intermediate state, dodecamer was stable state. The solvated Aβ oligomers including dimer, tetramer, hexamer and dodecamer are studied and further analyzed. Our result show that dimer was fold, but it beta-sheet structure were protected in N-terminal and C-terminal. To compare every oligomers find that dodecamer oligomer possesses the most stable structure and further induces strong neurotoxicity.
1. Kwasi G. Mawuenyega, W.S., Vitaliy Ovod, Ling Munsell, Tom Kasten, John C. Morris, Kevin E. and R.J.B. Yarasheski, Decreased Clearance of CNS β-Amyloid in Alzheimer’s Disease. Science, 2010.
2. Mingeot-Leclercq, M.P., et al., Membrane destabilization induced by beta-amyloid peptide 29-42: Importance of the amino-terminus. Chemistry and Physics of Lipids, 2002. 120(1-2): p. 57-74.
3. Murakami, K., et al., Synthesis, aggregation, neurotoxicity, and secondary structure of various A beta 1-42 mutants of familial Alzheimer's disease at positions 21-23. Biochemical and Biophysical Research Communications, 2002. 294(1): p. 5-10.
4. Saido, T.C., et al., DOMINANT AND DIFFERENTIAL DEPOSITION OF DISTINCT BETA-AMYLOID PEPTIDE SPECIES, A-BETA(N3(PE)), IN SENILE PLAQUES. Neuron, 1995. 14(2): p. 457-466.
5. Teller, J.K., et al., Presence of soluble amyloid beta-peptide precedes amyloid plaque formation in Down's syndrome. Nature Medicine, 1996. 2(1): p. 93-95.
6. Xu, Y.C., et al., Conformational transition of amyloid beta-peptide. Proceedings of the National Academy of Sciences of the United States of America, 2005. 102(15): p. 5403-5407.
7. Roberto Cappai, A.R.W., Molecules in focus Amyloid Beta. The International Journal of Biochemisty & Cell Biology 1999. 31: p. 885-889.
8. Klimov, D.K. and D. Thirumalai, Dissecting the assembly of A beta(16-22) amyloid peptides into antiparallel beta sheets. Structure, 2003. 11(3): p. 295-307.
9. Irie, K., et al., Structure of beta-amyloid fibrils and its relevance to their neurotoxicity: Implications for the pathogenesis of Alzheimer's disease. Journal of Bioscience and Bioengineering, 2005. 99(5): p. 437-447.
10. Serpell, L.C., Alzheimer's amyloid fibrils: structure and assembly. Biochimica Et Biophysica Acta-Molecular Basis of Disease, 2000. 1502(1): p. 16-30.
11. Cerf, E., et al., Antiparallel beta-sheet: a signature structure of the oligomeric amyloid beta-peptide. Biochemical Journal, 2009. 421: p. 415-423.
12. Wasling, P., et al., Synaptic Retrogenesis and Amyloid-beta in Alzheimer's Disease. Journal of Alzheimers Disease, 2009. 16(1): p. 1-14.
13. Yu, L.P., et al., Structural Characterization of a Soluble Amyloid beta-Peptide Oligomer. Biochemistry, 2009. 48(9): p. 1870-1877.
14. Cerpa, W., M.C. Dinamarca, and N.C. Inestrosa, Structure-function implications in Alzheimer's disease: Effect of a oligomers A beta central synapses. Current Alzheimer Research, 2008. 5(3): p. 233-243.
15. Selkoe, D.J., Soluble oligomers of the amyloid beta-protein impair synaptic plasticity and behavior. Behavioural Brain Research, 2008. 192(1): p. 106-113.
16. Lazo, N.D., et al., On the nucleation of amyloid beta-protein monomer folding. Protein Science, 2005. 14(6): p. 1581-1596.
17. Dickson, D.W., et al., CORRELATIONS OF SYNAPTIC AND PATHOLOGICAL MARKERS WITH COGNITION OF THE ELDERLY. Neurobiology of Aging, 1995. 16(3): p. 285-298.
18. Terry, R.D., et al., PHYSICAL BASIS OF COGNITIVE ALTERATIONS IN ALZHEIMERS-DISEASE - SYNAPSE LOSS IS THE MAJOR CORRELATE OF COGNITIVE IMPAIRMENT. Annals of Neurology, 1991. 30(4): p. 572-580.
19. Kuo, Y.M., et al., Water-soluble A beta (N-40, N-42) oligomers in normal and Alzheimer disease brains. Journal of Biological Chemistry, 1996. 271(8): p. 4077-4081.
20. Lue, L.F., et al., Soluble amyloid beta peptide concentration as a predictor of synaptic change in Alzheimer's disease. American Journal of Pathology, 1999. 155(3): p. 853-862.
21. McLean, C.A., et al., Soluble pool of A beta amyloid as a determinant of severity of neurodegeneration in Alzheimer's disease. Annals of Neurology, 1999. 46(6): p. 860-866.
22. Gellermann, G.P., et al., A beta-globulomers are formed independently of the fibril pathway. Neurobiology of Disease, 2008. 30(2): p. 212-220.
23. Barghorn, S., et al., Globular amyloid beta-peptide(1-42) oligomer - a homogenous and stable neuropathological protein in Alzheimer's disease. Journal of Neurochemistry, 2005. 95(3): p. 834-847.
24. Kirkitadze, M.D., G. Bitan, and D.B. Teplow, Paradigm shifts in Alzheimer's disease and other neuro degenerative disorders: The emerging role of oligomeric assemblies. Journal of Neuroscience Research, 2002. 69(5): p. 567-577.
25. Bernstein, S.L., et al., Amyloid-beta protein oligomerization and the importance of tetramers and dodecamers in the aetiology of Alzheimer's disease. Nature Chemistry, 2009. 1(4): p. 326-331.
26. Lesne, S., et al., A specific amyloid-beta protein assembly in the brain impairs memory. Nature, 2006. 440(7082): p. 352-357.
27. Klein, W.L., W.B. Stine, and D.B. Teplow, Small assemblies of unmodified amyloid beta-protein are the proximate neurotoxin in Alzheimer's disease. Neurobiology of Aging, 2004. 25(5): p. 569-580.
28. Luhrs, T., et al., 3D structure of Alzheimer's amyloid-beta(1-42) fibrils. Proceedings of the National Academy of Sciences of the United States of America, 2005. 102(48): p. 17342-17347.
29. Petkova, A.T., et al., A structural model for Alzheimer's beta-amyloid fibrils based on experimental constraints from solid state NMR. Proceedings of the National Academy of Sciences of the United States of America, 2002. 99(26): p. 16742-16747.
30. Petkova, A.T., W.M. Yau, and R. Tycko, Experimental constraints on quaternary structure in Alzheimer's beta-amyloid fibrils. Biochemistry, 2006. 45(2): p. 498-512.
31. Mucke, L., NEUROSCIENCE Alzheimer's disease. Nature, 2009. 461(7266): p. 895-897.
32. Goate, A., et al., SEGREGATION OF A MISSENSE MUTATION IN THE AMYLOID PRECURSOR PROTEIN GENE WITH FAMILIAL ALZHEIMERS-DISEASE. Nature, 1991. 349(6311): p. 704-706.
33. De Strooper, B., et al., Deficiency of presenilin-1 inhibits the normal cleavage of amyloid precursor protein. Nature, 1998. 391(6665): p. 387-390.
34. Scheuner, D., et al., Secreted amyloid beta-protein similar to that in the senile plaques of Alzheimer's disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer's disease. Nature Medicine, 1996. 2(8): p. 864-870.
35. Myers, A., et al., Susceptibility locus for Alzheimer's disease on chromosome 10. Science, 2000. 290(5500): p. 2304-+.
36. LaFerla, F.M., K.N. Green, and S. Oddo, Intracellular amyloid-beta in Alzheimer's disease. Nature Reviews Neuroscience, 2007. 8(7): p. 499-509.
37. St George-Hyslop, P.H. and A. Petit, Molecular biology and genetics of Alzheimer's disease. Comptes Rendus Biologies, 2005. 328(2): p. 119-130.
38. Walsh, D.M. and D.J. Selkoe, A beta Oligomers - a decade of discovery. Journal of Neurochemistry, 2007. 101(5): p. 1172-1184.
39. Corder, E.H., et al., GENE DOSE OF APOLIPOPROTEIN-E TYPE-4 ALLELE AND THE RISK OF ALZHEIMERS-DISEASE IN LATE-ONSET FAMILIES. Science, 1993. 261(5123): p. 921-923.
40. Fagan, A.M. and D.M. Holtzman, Astrocyte lipoproteins, effects of apoE on neuronal function, and role of apoE in amyloid-beta deposition in vivo. Microscopy Research and Technique, 2000. 50(4): p. 297-304.
41. Morgan, C., et al., Structure and function of amyloid in Alzheimer's disease. Progress in Neurobiology, 2004. 74(6): p. 323-349.
42. Roberson, E.D. and L. Mucke, 100 years and counting: Prospects for defeating Alzheimer's disease. Science, 2006. 314: p. 781-784.
43. Mathis, C.A., Y. Wang, and W.E. Klunk, Imaging beta-amyloid plaques and neurofibrillary tangles in the aging human brain. Current Pharmaceutical Design, 2004. 10(13): p. 1469-1492.
44. Wippold, F.J., et al., Neuropathology for the neuroradiologist: Plaques and tangles. American Journal of Neuroradiology, 2008. 29(1): p. 18-22.
45. Kirkitadze, M.D. and A. Kowalska, Molecular mechanisms initiating amyloid beta-fibril formation in Alzheimer's disease. Acta Biochimica Polonica, 2005. 52(2): p. 417-423.
46. Wood, W.G., et al., Amyloid beta-protein interactions with membranes and cholesterol: causes or casualties of Alzheimer's disease. Biochimica Et Biophysica Acta-Biomembranes, 2003. 1610(2): p. 281-290.
47. McLaurin, J. and A. Chakrabartty, Membrane disruption by Alzheimer beta-amyloid peptides mediated through specific finding to either phospholipids or gangliosides - Implications for neurotoxicity. Journal of Biological Chemistry, 1996. 271(43): p. 26482-26489.
48. Hardy, J. and D.J. Selkoe, Medicine - The amyloid hypothesis of Alzheimer's disease: Progress and problems on the road to therapeutics. Science, 2002. 297(5580): p. 353-356.
49. Nathalie, P. and O. Jean-Noel, Processing of amyloid precursor protein and amyloid peptide neurotoxicity. Current Alzheimer Research, 2008. 5(2): p. 92-99.
50. Buehler, M.J. and Y.C. Yung, Deformation and failure of protein materials in physiologically extreme conditions and disease. Nature Materials, 2009. 8(3): p. 175-188.
51. Lambert, M.P., et al., Diffusible, nonfibrillar ligands derived from A beta(1-42) are potent central nervous system neurotoxins. Proceedings of the National Academy of Sciences of the United States of America, 1998. 95(11): p. 6448-6453.
52. Catalano, S.M., et al., The role of amyloid-beta derived diffusible ligands (ADDLs) in Alzheimer's disease. Current Topics in Medicinal Chemistry, 2006. 6(6): p. 597-608.
53. Paravastu, A.K., et al., Molecular structural basis for polymorphism in Alzheimer's beta-amyloid fibrils. Proceedings of the National Academy of Sciences of the United States of America, 2008. 105(47): p. 18349-18354.
54. Petkova, A.T., et al., Self-propagating, molecular-level polymorphism in Alzheimer's beta-amyloid fibrils. Science, 2005. 307(5707): p. 262-265.
55. Zheng, J., et al., Annular structures as intermediates in fibril formation of Alzheimer A beta(17-42). Journal of Physical Chemistry B, 2008. 112(22): p. 6856-6865.
56. Murray, M.M., et al., Amyloid beta Protein: A beta 40 Inhibits A beta 42 Oligomerization. Journal of the American Chemical Society, 2009. 131(18): p. 6316-+.
57. Ryan, D.A., et al., An improved method for generating consistent soluble amyloid-beta oligomer preparations for in vitro neurotoxicity studies. Journal of Neuroscience Methods, 2010. 190(2): p. 171-179.
58. Haass, C. and D.J. Selkoe, Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer's amyloid beta-peptide. Nature Reviews Molecular Cell Biology, 2007. 8(2): p. 101-112.
59. Glenner, G.G. and C.W. Wong, ALZHEIMERS-DISEASE - INITIAL REPORT OF THE PURIFICATION AND CHARACTERIZATION OF A NOVEL CEREBROVASCULAR AMYLOID PROTEIN. Biochemical and Biophysical Research Communications, 1984. 120(3): p. 885-890.
60. Roberson, E.D. and L. Mucke, 100 years and counting: Prospects for defeating Alzheimer's disease. Science, 2006. 314(5800): p. 781-784.
61. Berendsen, H.J.C., D. Vanderspoel, and R. Vandrunen, GROMACS - A MESSAGE-PASSING PARALLEL MOLECULAR-DYNAMICS IMPLEMENTATION. Computer Physics Communications, 1995. 91(1-3): p. 43-56.
62. Lindahl, E., B. Hess, and D. van der Spoel, GROMACS 3.0: a package for molecular simulation and trajectory analysis. Journal of Molecular Modeling, 2001. 7(8): p. 306-317.
63. W.F. van Gunsteren, X.D., A. Mark, GROMOS force field. Encyclopedia Comput. Chem., 1998. 2: p. 1211-1216.
64. H.J.C.Berendsen JPMP, W.F.v.G.a.J.H., INTERACTION MODELS FOR WATER IN RELATION TO PROTEIN HYDRATION. Intermolecular Forces, 1981: p. pp. 331-342.
65. GROMACS, V., Groningen Machine for Chemical Simulations 2004.
66. Cruz, L., et al., Solvent and mutation effects on the nucleation of amyloid beta-protein folding. Proceedings of the National Academy of Sciences of the United States of America, 2005. 102(51): p. 18258-18263.
67. Kabsch, W. and C. Sander, DICTIONARY OF PROTEIN SECONDARY STRUCTURE - PATTERN-RECOGNITION OF HYDROGEN-BONDED AND GEOMETRICAL FEATURES. Biopolymers, 1983. 22(12): p. 2577-2637.
68. Zou, W.Q., et al., Amyloid-beta 42 Interacts Mainly with Insoluble Prion Protein in the Alzheimer Brain. Journal of Biological Chemistry, 2011. 286(17): p. 15095-15105.
69. Lauren, J., et al., Cellular prion protein mediates impairment of synaptic plasticity by amyloid-beta oligomers. Nature, 2009. 457(7233): p. 1128-U84.