| 研究生: |
黃詣凱 Huang, Yi-Kai |
|---|---|
| 論文名稱: |
鉍銅硒氧與鉍銅硫氧摻雜鈷和鍶對熱電性質之影響 The effects of cobalt and strontium substitutions on the thermoelectric properties of BiCuSeO and BiCuSO |
| 指導教授: |
齊孝定
Qi, Xiao-Ding |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 115 |
| 中文關鍵詞: | 熱電 、席貝克係數 、熱電優值 、鉍銅硒氧 、鉍銅硫氧 |
| 外文關鍵詞: | thermoelectric, Seebeck coefficient, ZT, BiCuSeO, BiCuSO |
| 相關次數: | 點閱:109 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要是探討氧化物熱電材料的熱電特性,氧化物熱電材料是一個逐漸受到重視的新興體系,具有工作溫度高、可靠度佳和不需封裝等優點。而鉍銅硒氧與鉍銅硫氧材料為最近文獻報導極具潛力的氧化物熱電材料之一。
本實驗除了研究兩個母體材料的特性之外,亦探討摻雜元素對其席貝克係數、電性以及熱傳導率等熱電性質的影響。本研究利用固相反應燒結法分別合成出摻雜鈷之鉍銅硒氧與摻雜鍶之鉍銅硫氧多晶塊材,接著以X光粉末繞射儀、高解析掃描電子顯微鏡、阿基米得原理密度量測、霍爾量測系統、席貝克係數量測系統、電導率-溫度量測系統及熱傳導係數分析儀等分析方法,探討鉍銅硒氧與鉍銅硫氧材料在摻雜前和摻雜後一般物性化性及熱電性質的差異。
由量測結果可以知道,鉍銅硒氧在鈷摻雜量為15%時有最大的熱電優值ZT,出現在量測溫度450K處為0.55;鉍銅硫氧在鍶摻雜量為5%時有最大的功率因子PF,出現在量測溫度700K處為14.82μW/mK2。
The aim of this study was to investigate the thermoelectric properties of oxide thermoelectric materials, which have recently acquired a great attention worldwide. One of the apparent advantages of the oxides is their thermal stability in air, so that no packaging of the thermoelectrics is required at the high working temperature. BiCuSeO and BiCuSO have recently been identified to be very promising thermoelectric materials owing to their high Seebeck coefficients and low thermal conductivities. In this work, Bi1-xCoxCuSeO and Bi1-xSrxCuSO (x = 0~0.15) samples were synthesized by the solid-state reaction method. The phase purity, microstructure, Seebeck coefficient, and electrical and thermal conductivities of the prepared polycrystalline samples were studied by a wide range of techniques. The effects of the Co and Sr doping were examined. The results showed that the maximum ZT of the BiCuSeO system was achieved with the 15% Co-doped BiCuSeO, which reached 0.55 at 450K, while the best power factor of the BiCuSO system was observed with the 5% Sr-doped BiCuSO, which displayed a value of 14.82μW/mK2 at 700K.
[1] T. M. Tritt and M. A. Subramanian, Thermoelectric Materials, Phenomena, and Application: A Bird’s Eye View. MRS Bulletin, Vol.31, 188-198, (2006).
[2] L. D. Hicks and M. S. Dresselhaus, Phys. Rev. B47, 12727, (1993).
[3] K. Ueda and H. Hosono, Thin Solid Films, 411, 115, (2002).
[4] T. J. Seebeck, Magnetic polarization of metals and minerals, Abhandlungen der Deutschen Akademie Wissenschaften zu Berlin, 265, (1823).
[5] J. C. Peltier, Nouvelles experiences sur la caloriecete des courans
electriques. Ann. Chem., LVI, pp. 371-387, (1834).
[6] W. Thomson, On a mechanical theory of thermo- electric currents, Proceeding of the Royal Society of Edinburgh, 91, (1851).
[7] T. J. Seebeck, Magnetische Polarisation der Metalle und Erze durch Temperatur-Differenz. Abh. Akad. Wiss. Berlin, 265-373, (1825).
[8] D. M. Rowe, CRC handbook of thermoelectrics, 1-131, (1995).
[9] D. M. Rowe, Thermoelectrics Handbook : Macro to Nano, (2005).
[10] D. D. Pollock, Physic of Engineering Materials, Prentice Hall, Englewood Cliffs, NJ, 330, (1990).
[11] W. Thomson, An account of Carnot’s theory of the motive power of heat, Proc. R. Soc. Edinburgh, 16, 541, (1849).
[12] C. Kittel, Introduction to Solid State Physics, 8th Edition.
[13] G. S. Nolas, J. Sharp and H. J. Goldsmid, Thermoelectrics Basic Principles and New Materials Developments, (2001).
[14] T. Caillat, J. P. Fleurial and A. Borshchevsky, J. Phys. Chem. Solid, Vol 58, No. 7, p.1119-p.1125, (1997).
[15] D. Jiles, Introduction to Electronic Properties of Materials, pp.46-48, (1995).
[16] J. R. Sootsman, D. Y. Chung and M. G. Kanatzidis, New and Old Concepts in Thermoelectric Materials., Angew Chem Int Ed Engl, 48, 8616-39, (2009).
[17] D. M. Rowe, CRC Handbook of THERMOELECTRICS .New York:CRC press, 489-492, (1995).
[18] J. Yang and T. Caillat, MRS Bull., 31, 224, (2006).
[19] F. J. DiSalvo, Thermoelectric cooling and power generation, Science, 285(5428), 703-706, (1999).
[20] R. M. Vlasova and L. S. Stil'bans, J. Tech. Phys., 25, 569, (1955).
[21] S. W. Li, R. Funahashi, I. Matsubara, K. Ueno, S. Sodeoka and H. Yamada, Chem. Mater., 12, 2424-2427, (2000).
[22] L. N. Kholodkovskaya, L. G. Akselrud, A. M. Kusainova, V. A. Dolgikh and B. A. Popovkin, Materials Science Forum, 133-136, 693-696, (1993).
[23] A. M. Kusainova, P. S. Berdonosov and L. G. Akselrud, Journal of Solid State Chemistry, 112, 189-191, (1994).
[24] M. Yasukawa, K. Ueda and H. Hosono, Journal of Applied Physics, 95, 3594-3597, (2004).
[25] M. Lee, L. Viciu, L. Li, Y. Y. Wang, M. L. Foo, S. Watauchi, R. A. Pascal, R. J. Cava and N. P. Ong, Nat. Mater., 5, 537-540, (2006).
[26] Y. Liu, L. D. Zhao, Y. Liu, J. Lan, W. Xu, F. Li, B. P. Zhang, D. Berardan and N. Dragoe, Journal of American Chemical society, 133, 20112-20115, (2011).
[27] M. Zebarjadi, K. Esfarjani, M. S. Dresselhaus, Z. F. Ren and G. Chen, Energy Environ. Sci., 5, 5147-5162, (2012).
[28] J. Li, J. Sui, Y. Pei, C. Barreteau, D. Berardan, N. Dragoe, W. Cai, J. He and L. D. Zhao, Energy Environ. Sci., 5, 8543, (2012).
[29] W. C. Sheets, E. S. Stampler, H. Kabbour, M. I. Bertoni, L. Cario, T. O. Mason, T. J. Marks and K. R. Poeppelmeier, Inorg. Chem., 46, 10741-10748, (2007).
[30] A. Pal, H. Kishan and V. P. S. Awana, J. Supercond. Nov. Magn., 23, 301-304, (2010).
[31] A. P. Richard, Single Crystal Growth, Powder Synthesis and Characterization of Layered Chalcogenide Semiconductors, p65-68, (2011).
[32] A. P. Richard, J. A. Russell, A. Zakutayev, L. N. Zakharov, D. A. Keszler, J. Tate, Journal of Solid State Chemistry, 187, 15-19, (2012).
[33] D. Zou, S. Xie, Y. Liu, J. Lin and J. Li, J. Mater. Chem. A, 1, 8888, (2013).
[34] 朱旭山,熱電材料與元件之原理與應用,電子與材料雜誌,第22期,第78-89頁,(2004)。
[35] 汪建民,材料分析,中國材料科學學會,(2009)。
[36] 林麗娟,X光繞射原理及其應用,工業材料,(1994)。
[37] G. J. Snyder and E. S. Toberer, Complex thermoelectric materials, Nature Materials, 7, 105-114, (2008).
[38] L. D. Zhao, J. He, D. Berardan, Y. Lin, J. F. Li, C. W. Nan and N. Dragoe, Energy Environ. Sci., 7, 2900, (2014).
[39] J. L. Lan, B. Zhan, Y. C. Liu, B. Zheng, Y. Liu, Y. H. Lin and C. W. Nan, Applied Physics Letters, 102, 123905, (2013).
[40] F. Li, T. R. Wei, F. Kang and J. F. Li, J. Mater. Chem. A, 1, 11942, (2013).
[41] J. Li, J. Sui, C. Barreteau, D. Berardan, N. Dragoe, W. Cai, Y. Pei and L. D. Zhao, Journal of Alloys and Compounds, 551, 649-653, (2013).
[42] L. D. Zhao, D. Berardan, Y. L. Pei, C. Byl, L. Pinsard-Gaudart and N. Dragoe, Applied Physics Letters, 97, 092118, (2010).
[43] F. Li, J. F. Li, L. D. Zhao, K. Xiang, Y. Liu, B. P. Zhang, Y. H. Lin, C. W. Nan and H. M. Zhu, Energy Environ. Sci., 5, 7188, (2012)
[44] C. Barreteau, D. Berardan, E. Amzallag, L. D. Zhao and N. Dragoe, Chem. Mater., 24, 3168-3178, (2012).
[45] L. Pan, D. Berardan, L. D. Zhao, C. Barreteau and N. Dragoe, Applied Physics Letters, 102, 023902, (2013).