| 研究生: |
陳威廷 Chen, Wei-Ting |
|---|---|
| 論文名稱: |
硫化鎳/磁性陣列鎳奈米線混合應用於染料敏化太陽能電池對電極之研究 Nickel Sulfide/Magnetic Array of Nickel Nanowires Hybrid Structure for Counter Electrode in Dye-Sensitized Solar Cells |
| 指導教授: |
涂維珍
Tu, Wei-Chen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 奈米積體電路工程碩士博士學位學程 MS Degree/Ph.D. Program on Nano-Integrated-Circuit Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 72 |
| 中文關鍵詞: | 硫化鎳 、鎳奈米線 、海爾貝克陣列 、染料敏化太陽能電池 |
| 外文關鍵詞: | Nickel sulfide, Nickel nanowires, Halbach array, Dye-sensitized solar cells |
| 相關次數: | 點閱:52 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
工業革命之後全世界的用電量持續增加,但是火力發電使用的化石燃料會排放溫室氣體,造成全球暖化,使用環保的替代能源刻不容緩,而太陽能是目前環保能源中佔的比例最高,因而開發了許多種太陽能電池,其中染料敏化太陽能電池與其他類型的太陽能電池相比具有原料成本低、容易製作和可以藉由室內光源發電等優勢,使得許多研究人員投入研發染料敏化太陽能電池。
本論文製作硫化鎳加上鎳奈米線的奈米結構作為染料敏化太陽能電池中的對電極,利用簡便且便宜的水熱法合成硫化鎳和用多元醇法合成鎳奈米線,透過X光繞射儀和傅立葉轉換紅外光譜儀確認合成出來的材料的準確性。除此之外,實驗藉由海爾貝克陣列改變鎳奈米線在硫化鎳薄膜排列,提升電子傳輸率。利用四點探針觀察片電阻的變化,使用光學顯微鏡和掃描式電子顯微鏡觀察鎳奈米線排列狀況,最後進行元件分析。濃度為0.130mg/ml的鎳奈米線陣列於硫化鎳薄膜上的對電極有最高的轉換效率8.94%,比常用於染料敏化太陽能電池的對電極材料白金高出1.57%。很大的潛力可以替代白金作為染料敏化太陽能電池中對電極的材料,降低成本,使染料敏化太陽能電池在未來商用更進一步。
With the increasing global electricity demand following the industrial revolution, the use of fossil fuels in thermal power generation has resulted in greenhouse gas emissions and global warming. It is imperative to urgently develop environmentally friendly alternative energy sources. Solar energy, which currently holds the largest share among renewable energy sources, has led to the development of various types of solar cells. Among them, dye-sensitized solar cells (DSSCs) have advantages such as low raw material costs, ease of fabrication, and the ability to generate electricity from indoor light sources. These advantages have led to continuous research and development by many researchers.
In this study, a nanohybrid structure of nickel sulfide with nickel nanowires was fabricated as the counter electrode in dye-sensitized solar cells. Nickel sulfide was synthesized using a simple and cost-effective hydrothermal method, while nickel nanowires were synthesized using a polyol method. The properties of the synthesized materials were confirmed through X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR). By modifying the arrangement of nickel nanowires in the nickel sulfide film using a Halbach array, the electron transport mobility was improved. The variation in sheet resistance was observed using a four-point probe. The arrangement of nickel nanowires was observed using optical microscopy and scanning electron microscopy(SEM). Finally, device analysis was conducted, and it was found that the counter electrode with a concentration of 0.130 mg/ml of nickel nanowire array on the nickel sulfide film achieved the highest conversion efficiency of 8.94%. This efficiency was 1.57% higher than that of the commonly used counter electrode material platinum in dye-sensitized solar cells. There is great potential to replace platinum as the electrode material in dye-sensitized solar cells, which would reduce costs and further advance the commercialization of dye-sensitized solar cells in the future.
[1] Karthick, S. N., Hemalatha, K. V., Balasingam, S. K., Manik Clinton, F., Akshaya, S., & Kim, H. J. (2019). Dye‐sensitized solar cells: history, components, configuration, and working principle. Interfacial Engineering in Functional Materials for Dye‐Sensitized Solar Cells, 1-16.
[2]Grice, J. D., & Ferguson, R. B. (1974). Crystal structure refinement of millerite (beta-NiS). The Canadian Mineralogist, 12(4), 248-252.
[3] Zhou, W., Jia, X., Chen, L., Yin, Z., Zhang, Z., & Gao, G. (2016). Low cost NiS as an efficient counter electrode for dye-sensitized solar cells. Materials Letters, 163, 1-3.
[4] Sun, C., Ma, M., Yang, J., Zhang, Y., Chen, P., Huang, W., & Dong, X. (2014). Phase-controlled synthesis of α-NiS nanoparticles confined in carbon nanorods for high performance supercapacitors. Scientific reports, 4(1), 7054.
[5] Yang, X., Liang, H. J., Yu, H. Y., Wang, M. Y., Zhao, X. X., Wang, X. T., & Wu, X. L. (2020). Recent progresses and challenges of metal sulfides as advanced anode materials in rechargeable sodium-ion batteries. Journal of Physics: Materials, 3(4), 042004.
[6] Dai, C., Li, B., Li, J., Zhao, B., Wu, R., Ma, H., & Duan, X. (2020). Controllable synthesis of NiS and NiS 2 nanoplates by chemical vapor deposition. Nano Research, 13, 2506-2511.
[7]Dai, W., Pan, Y., Wang, N., Wu, S., Li, X., Zhu, Y. A., & Lu, T. (2018). Nanocrystalline NiS particles synthesized by mechanical alloying as a promising oxygen evolution electrocatalyst. Materials Letters, 218, 115-118.
[8]Sarkar, A., Chakraborty, A. K., & Bera, S. (2018). NiS/rGO nanohybrid: An excellent counter electrode for dye sensitized solar cell. Solar Energy Materials and Solar Cells, 182, 314-320.
[9]Byrappa, K., & Adschiri, T. (2007). Hydrothermal technology for nanotechnology. Progress in crystal growth and characterization of materials, 53(2), 117-166.
[10] Adschiri, T., Hakuta, Y., & Arai, K. (2000). Hydrothermal synthesis of metal oxide fine particles at supercritical conditions. Industrial & engineering chemistry research, 39(12), 4901-4907.
[11]Japan Industrial Waste Informatiopn Center 0website https://www.jwnet.or.jp/en/iwc/5_0810.html
[12] Tsymbal, E. Y., & Pettifor, D. G. (2001). Perspectives of giant magnetoresistance. In Solid state physics (Vol. 56, pp. 113-237). Academic Press.
[13]Yan, H., Yang, W., & Xue, D. (2016). Nickel Nanowires as Highly Active Catalysts for the Hydrogen Evolution Reaction. Journal of the American Chemical Society, 138(47), 15488-15491.
[14] Pan, H., Liu, B., Yi, J., Poh, C., Lim, S., Ding, J., ... & Lin, J. (2005). Growth of single-crystalline Ni and Co nanowires via electrochemical deposition and their magnetic properties. The Journal of Physical Chemistry B, 109(8), 3094-3098.
[15]Fiévet, F., Ammar-Merah, S., Brayner, R., Chau, F., Giraud, M., Mammeri, F., ... & Viau, G. (2018). The polyol process: a unique method for easy access to metal nanoparticles with tailored sizes, shapes and compositions. Chemical Society Reviews, 47(14), 5187-5233.
[16]Varanda, L. C., Souza, C. G., Moraes, D. A., Neves, H. R., Souza Junior, J. B., Silva, M. F., ... & Beck Junior, W. (2019). Size and shape-controlled nanomaterials based on modified polyol and thermal decomposition approaches. A brief review. Anais da Academia Brasileira de Ciências, 91, e20181180.
[17]Ahmad, M. S., Pandey, A. K., & Abd Rahim, N. (2017). Advancements in the development of TiO2 photoanodes and its fabrication methods for dye sensitized solar cell (DSSC) applications. A review. Renewable and Sustainable Energy Reviews, 77, 89-108.
[18]Magne, C., Dufour, F., Labat, F., Lancel, G., Durupthy, O., Cassaignon, S., & Pauporté, T. (2012). Effects of TiO2 nanoparticle polymorphism on dye-sensitized solar cell photovoltaic properties. Journal of Photochemistry and Photobiology A: Chemistry, 232, 22-31.
[19]Robertson, N. (2006). Optimizing dyes for dye‐sensitized Solar Cells. Angewandte Chemie International Edition, 45(15), 2338-2345.
[20]Su’ait, M. S., Rahman, M. Y. A., & Ahmad, A. (2015). Review on polymer electrolyte in dye-sensitized solar cells (DSSCs). Solar Energy, 115, 452-470.
[21]Yoon, C. H., Vittal, R., Lee, J., Chae, W. S., & Kim, K. J. (2008). Enhanced performance of a dye-sensitized solar cell with an electrodeposited-platinum counter electrode. Electrochimica Acta, 53(6), 2890-2896.
[22]Labat, F., Le Bahers, T., Ciofini, I., & Adamo, C. (2012). First-principles modeling of dye-sensitized solar cells: challenges and perspectives. Accounts of Chemical Research, 45(8), 1268-1277.
[23]Jamalullail, N., Mohamad, I. S., Norizan, M. N., Baharum, N. A., & Mahmed, N. (2017, December). Short review: Natural pigments photosensitizer for dye-sensitized solar cell (DSSC). In 2017 IEEE 15th Student Conference on Research and Development (SCOReD) (pp. 344-349). IEEE.
[24]I-V Curve: PVCDROM:https://www.pveducation.org/
[25]Halbacharray:WIKIPEDIA:https://en.wikipedia.org/wiki/Halbach_array
[26]Tiggelaar, R. M., Sanders, R. G., Groenland, A. W., & Gardeniers, J. G. (2009). Stability of thin platinum films implemented in high-temperature microdevices. Sensors and Actuators A: Physical, 152(1), 39-47.
校內:2026-07-20公開