| 研究生: |
王文靖 Wang, Wen-Jing |
|---|---|
| 論文名稱: |
銀顆粒於氮化鎵奈米線在表面增顯拉曼散射之研究 Study of surface-enhanced Raman scattering from silver-coated GaN nanowires |
| 指導教授: |
陳引幹
Chen, In-Gann |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 112 |
| 中文關鍵詞: | 表面增顯拉曼散射 、氮化鎵奈米線 |
| 外文關鍵詞: | surface-enhenced Raman scattering (SERS), GaN nanowires |
| 相關次數: | 點閱:65 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗利用化學氣相沈積反應,以鉑做為催化劑成長氮化鎵奈米線於矽基板上。並分別比較三種不同製程方法:紅外線爐加熱法、濺鍍法及電子束蒸鍍法,將銀顆粒附著於氮化鎵奈米線表面,製備具表面增顯拉曼散射效果(Surface-Enhanced Raman Scattering, SERS)之基板,檢測吸附在銀顆粒表面的分子探針Rhodamine 6G (R6G)濃度。
比較三種銀顆粒附著方法的SERS增顯效果,紅外線加熱法所製備的SERS基板,增顯因子僅5×103,R6G檢測濃度可達10-3M;濺鍍法所製備的SERS基板,增顯因子為9×104,R6G檢測濃度可達10-6M;電子束蒸鍍法所製備的SERS基板,其增顯因子為4×105 ,R6G檢測濃度可達10-12M。
在使用電子束蒸鍍法附著銀顆粒於氮化鎵奈米線的實驗中,隨著蒸鍍銀膜厚的增加,氮化鎵奈米線上的銀顆粒會由獨立圓球形奈米銀顆粒逐漸團聚而形成不規則島狀。隨著銀蒸鍍膜厚由10Å增加至1800Å,銀覆蓋率由20%增加至30%,但獨立圓球形奈米銀顆粒的覆蓋率由15%降低至2%。
將上述試片滴上10-3 M的R6G溶液並進行表面增顯拉曼量測,其結果顯示,隨著銀蒸鍍膜厚由10Å增加至1800Å,SERS強度由20000降低至8000。此結果顯示獨立圓球形的奈米銀顆粒有助於增強SERS的增顯效果。
電子束蒸鍍法為三種方法中最能有效產生獨立圓球形銀顆粒於奈米線表面的方法,使其SERS增顯效果最為顯著。
以電子束蒸鍍法所製備的活性基板檢測不同R6G溶液濃度,結果顯示,在 10-3 到 10-12M 濃度之間,表面增顯拉曼訊號的強度變化有隨 R6G 濃度變化呈現近似線性的變化趨勢。此趨勢說明,有銀顆粒附著的氮化鎵奈米線,具有作為表面增顯拉曼活性基板的應用潛力。
In this study, Surface Enhanced Raman Scattering (SERS) phenomena of silver-coated GaN nanowires has been investigated. SERS substrates were fabricated by deposition of Ag nanoparticles on GaN nanowires. Three different deposition strategies has been carried out: IR furnace heating treatment, sputtering method and electron beam evaporation method. Characterization of Raman scattering has been investigated in the presence of Rhodamine 6G (R6G).
Comparison between these three different methods shows that the enhancement factor was 5×103, 9×104, 4×105 for IR furnace heating treatment, sputtering and e-beam method, respectively. The lowest detectable R6G concentration in SERS spectra was 10-3M, 10-6M and 10-12M for IR furnace heating treatment, sputtering and E-beam evaporation method, respectively.
Using E-beam method, which increase the Ag deposition thickness from 10Å to 1800Å, induce Ag nanoparticles agglomeration to form non-uniform islands.
Increasing the Ag deposition thickness from 10Å to 1800Å leads to an increase of the total Ag coverage from 20% to 30%. However, the Ag nanoparticles coverage was decreased from 15% to 2%. SERS measurement of 10-3M R6G showed that the SERS intensity was decreased from 20,000 to 8,000 when Ag deposition thickness was increased from 10Å to 1800Å. These results indicate that nanoparticles are suitable for the SERS performance.
Substrate that we fabricated by the e-beam method shows linear relationship between R6G concentration and SERS intensity. In conclusion, we believe that Ag nanoparticles adsorbed on GaN nanowires can be a potential SERS active substrate.
[1] S.Iijima, “ Helical microtubules of graphitic carbon”, Nature, 354, 56-58 (1991).
[2] K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari and M. S. Feld, ”Surface-enhanced Raman scattering and biophysics,” Journal of Physics: Condensed Matter,Vol. 14, 597-624, 2002.
[3] M. Moskovits, K. Kneipp and H. Kneipp, ”Surface-Enhanced Raman Scattering: Physics and Applications” Springer , 2-40, 2006.
[4] 陳永芳,「是誰最先觀測到拉曼散射」,物理雙月刊,21期5卷,600,1999。
[5] 謝雲生,「雷射拉曼光譜簡介」,物理雙月刊,7期1卷,25,1985。
[6] 邱國斌,蔡定平,「金屬表面電漿簡介」,物理雙月刊,28期2卷,472,2006。
[7] W. P. Halperin, "Quantum Size Effects in Metal Particles", Rev. Mod. Phys., 58, 533 (1986).
[8] Ball P and G. Laura, "Science at the Atomic Scale", Nature, 355, 761 (1992).
[9] Quagliano L G, Jusserand B and Orani D,” SERS Spectroscopy to Study Adsorbates on Semiconductor Surfaces” , J. Raman Spectrosc.29,721~724 (1998)
[10] M. A. Khan, T. P. Hogan and B. Shanker,” Surface-enhanced Raman scattering from gold-coated germanium oxide nanowires.”, J. Raman Spectrosc. ,39,893–900(2008)
[11] D. I. Florescu, V. M. Asnin, Fred H. Pollak, A. M. Jones, J. C. Ramer, M. J. Schurman, and I. Ferguson, "Thermal Conductivity of Fully and Partially Coalesced Lateral Epitaxial Overgrown GaN/Sapphire (0001) by Scanning Thermal Microscopy", Appl. Phys. Lett., 77, 1464 (2000).
[12] M. Leroux, B. Gil, in: J.H. Edgar, S.S. Strite, I. Akasaki, H. Amano (Eds.), INSPEC, The Institution of Electrical Engineers, Stevenage, UK, 45 (1999).
[13] D. C. Look and J. R. Sizelove, "Predicted Maximum Mobility in Bulk GaN", Appl. Phys. Lett, 79, 1133 (2001).
[14] U. Kaufmann, P. Schlotter, H. Obloh, K. Köhler, and M. Maier, "Hole Conductivity and Compensation in Epitaxial GaN:Mg Layers", Phys. Rev. B., 62, 10867 (2000).
[15] D. Doppalapudi and T. D. Moustakas, in: H.S. Nalwa (Ed.), Handbook of Thin Film Materials, 4, 57 (2002).
[16] S. Porowski and i. J. H. E. E. Grzegory, Properties of Group III Nitrides, INSPEC, The Institution of Electrical Engineers, Stevenage, UK., p76 (1994).
[17] R. R. Reeber and K. Wang, "Lattice Parameters and Thermal Expansion of GaN", J. Mater. Res., 15, 40 (2000).
[18] S. Krukowski, M. Leszcynski, and i. J. H. E. S. Porowski, S.S. Strite, I. Akasaki, H. Amano (Eds.), INSPEC, The Institution of Electrical Engineers, Stevenage, UK., p21 (1999).
[19] S. O. Kucheyev, J. E. Bradby, J. S. Williams, C. Jagadish, M. Toth, M. R. Phillips, and M. V. Swain, "Nanoindentation of Epitaxial GaN Films", Appl. Phys. Lett, 77, 3373 (2000).
[20] I. Yonenaga, T. Hoshi, and A. Usui, "Hardness of Bulk Single-Crystal Gallium Nitride at High Temperatures", Jpn. J. Appl. Phys., 39, L200 (2000).
[21] I. Yonenaga and K. Motoki, "Yield Strength and Dislocation Mobility in Plastically Deformed Bulk Single-Crystal GaN", J. Appl. Phys., 90, 6539 (2001).
[22] S. Mark and C. M. Lieber, "Diameter-Selective Synthesis of Semiconductor Nanowires", J. Am. Chem. Soc., 122, 8801-8802 (2000).
[23] 史光國, "GaN 藍色發光及雷射二極體之發展現況", 工業材料, 126.
[24] T. E. Bogart, S. Dey, K. K. Lew, S. E. Mohney, and J. M. Redwing, "Diameter-Controlled Synthesis of Silicon Nanowires Using Nanoporous Alumina Membranes", Adv. Mater., 17, 114-117 (2005).
[25] M. S. Gudiksen and C. M. Lieber, "Diameter-Selective Synthesis of Semiconductor Nanowires", J. Am. Chem. Soc., 122, 8801 (2000).
[26] Y. Wu and P. Yang, "Germanium Nanowire Growth via Simple Vapor Transport", Chem. Mater., 12, 605-607 (2000).
[27] E. A. Stach, P. J. Pauzauskie, T. Kuykendall, J. Goldberger, R. He, and P. Yang, "Watching GaN Nanowires Grow", Nano. Lett., 3, 867-869 (2003).
[28] Y. Wu, R. Fan, and P. Yang, "Block-by-Block Growth of Single-Crystalline Si/SiGe Superlattice Nanowires", Nano. Lett., 2, 83 (2002).
[29] T. J. Trentler, K. M. Hickman, S. C. Goel, A. M. Viano, P. C. Gibbons, and W. E. Buhro, "Solution-Liquid-Solid Growth of Crystalline III-V Semiconductors: An Analogy to Vapor-Liquid-Solid Growth", Science, 270, 1791 (1995).
[30] Richard L. McCreery, Raman Spectroscopy for chemical analysis, New york : Wiley Interscience, (2000)
[31] K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari and M. S. Feld, “Ultrasensitive Chemical Analysis by Raman Spectroscopy,” Chemical Reviews, Vol. 99, 2957-2975, (1999).
[32] R. W. Wood, “On a remarkable case of uneven distribution of Light in a Diffraction Grating Spectrum,” Proceedings of the Physical Society of London, Vol. 18, 269-275, (1902).
[33] U. Fano, “The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (sommerfeld’s waves)” Journal of the Optical Society of America, Vol. 31, 213-222, (1942).
[34] A. Hessel, A. A. Oliner, “A New Theory of Wood’s Anomalies on Optical Gratings” Applied Optics, Vol. 4, 1275-1297, (1965).
[35] A. G. Brolo, D. E. Irish and B. D. Smith, “Applications of surface enhanced Raman scattering to the study of metal-adsorbate interactions,” Journal of Molecular Structure, Vol. 405, 29-44, (1997).
[36] A. Campion, P. Kambhampati, “Surface-enhanced Raman scattering,” Chemical Society Reviews, Vol. 27, 241-243, (1998).
[37] Y. Chen, Y. Fang, “Surface enhanced Raman scattering (SERS) activity studies of Si, Fe, Ti, Al and Ag films’ prepared by magnetron sputtering,” Spectrochimica Acta part A:Molecular and Biomolecular Spectroscopy, Vol. 69, 733-737, (2008).
[38] H. Zhou, L. Jin and W. Xu, “New approach to fabricate nanoporous gold film,” Chinese Chemical Letters, Vol. 18, 365-368, (2007).
[39] Y. Wang, S. Guo, H. Chen and E. Weng, “Facile fabrication of large area of aggregated gold nanorods film for efficient surface-enhanced Raman scattering,” Journal of Colloid and Interface Science , Vol. 318, 82-87, (2008).
[40] D. Philip, K. G. Gopchandran, C. Unni and K. M. Nissamudeen, “Synthesis, characterization and SERS activity of Au-Ag nanorods,” Spectrochimica Acta Part A, Vol. 70, 780-784, (2007).
[41] J. Zhou, J. An, B. Tang, S. Xu, Y. Cao, B. Zhao, W. Xu, J. Chang and J. R. Lombardi, “Growth of Tetrahedral Silver Nanocrystals in Aqueous Solution and Their SERS Enhancement,” Langmuir, Vol. 24, 10407-10413, (2008).
[42] 李冠卿,「表面強化拉曼散射」,物理雙月刊,5期4卷,185,(1983).
[43] J. R. Ferraro, K. Nakamoto, “Introduction Raman spectroscopy,” Academic Press, 1-25, (1994).
[44] S. Kruszewski, “Dependence of SERS Signal on surface roughness,” Surface and Interface Analysis, Vol. 21, 830-838, (1994).
[45] M. Baibarac, M. Cochet, M. Lapkowski, L. Mihut , S. Lefrant and I. Baltog, “SERS spectra of polyaniline thin films deposited on rough Ag, Au and Cu. Polymer film thickness and roughness parameter dependence of SERS spectra,” Synthetic Metals, Vol. 96, 63-70, (1998).
[46] A. G. Brolo, D. E. Irish, G. Szymanski and J. Lipkowski, “Relationship between SERS intensity and both surface coverage and morphology for pyrazine adsorbed on a polycrystalline gold electrode,” Langmuir, Vol. 14, 517-527, (1998).
[47] S. Kruszewski, T. Kobiela, “AFM and optical methods in determining of roughness of SERS-active silver,” Proceedings of SPIE, Vol. 4517, 115-119, (2001).
[48] W. C. Liu, “High sensitivity of surface plasmon of weakly-distorted metallic surfaces,” Optics Express, Vol. 13, 9766-9773, (2005).
[49] J. Fang, Y. Yi, B. Ding, and X. Song, “A route to increase the enhancement factor of surface enhanced Raman scattering (SERS) via a high density Ag flower-like pattern,” Applied Physics Letters, Vol. 92, 131115, (2008).
[50] M. Mandal, N. R. Jana, S. Kundu, S. K. Ghosh, M. Panigrahi and T. Pal, “Synthesis of Aucore-Agshell type bimetallic nanoparticles for single molecule detection in solution by SERS method,” Journal of Nanoparticle, Vol. 6, 53-61, (2004).
[51] R. M. Liu, Y. P. Kang, X. F. Zi, M. J. Feng, M. Cheng and M. Z. Si, “The ultratrace detection of crystal violet using surface enhanced Raman scattering on colloidal Ag nanoparticles prepared by electrolysis,” Chinese Chemical Letters , Vol. 20, 711-715 ,(2009).
[52] R. Sanc, M. Volkan, “Surface-enhanced Raman scattering (SERS) studies on silver nanorod substrates,” Sensors and Actuators B, Vol. 139, 150-155, (2009).
[53] D. G. Yu, W. C. Lin, C. H. Lin, L. M. Chang and M. C. Yang, “An in situ reduction method for preparing silver/poly(vinyl alcohol)nanocomposite as surface-enhanced Raman scattering(SERS)-active substrates,” Materials Chemistry and Physics, Vol. 101, 93-98, (2007).
[54] X. Lili, F. Yan, “Raman and surface Raman spectroscopy with ultraviolet excitation,” Spectrochimica Acta Part A, Vol. 61, 1991-1995,( 2005).
[55] S. Xu, B. Zhao, W. Xu and Y. Fan, “Preparation of Au–Ag coreshell nanoparticles and application of bimetallic sandwich in surface-enhanced Raman scattering (SERS),” Colloids and Surfaces A: Physicochem. Eng. Aspects, Vol. 257-258, 313-317, (2005).
[56] Y. Fleger, Y. Mastai, M. Rosenbluh and D. H. Dressler, “Surface enhanced Raman spectroscopy of aromatic compounds on silver nanoclusters,” Surface Science, Vol. 603, 788-793, (2009).
[57] M. M. Miranda, B. Pergolese and A. Bigotto “SERS monitoring of Pd-catalysed reduction processes of nitroarenes adsorbed on Ag/Pd colloidal nanoparticles,” Chemical Physics Letters, Vol. 423, 35-38, (2006).
[58] T. Wadayama, M. Oishi and A. Hatta, “Surface enhanced Raman scattering of organic sample powders spread over vacuum-evaporated silver thin film,” Applied Surface Science, Vol. 253, 2713-2717, (2006).
[59] G. Grundmeier, M. Stratmann, “Adhesion and de-adhesion mechanisms at polymer/metal interfaces: mechanistic understanding based on in situ studies of buried interfaces,” Annual Review of Materials Research, Vol. 35, 571-615, (2005).
[60] C. C. Lin, Y. M. Yang, Y. F. Chen, T. S. Yang and H. C. Chang, “A new protein A assay based on Raman reporter labeled immunogold nanoparticles,” Biosensors and Bioelectronics, Vol. 24, 178-183, (2008).
[61] P. L. Chazot, P. G. Strange, “Importance of thiol groups in ligand binding to D2 dopamine receptors from brain and anterior pituitary gland,” Biochemical Journal, Vol. 281, 377-380,(1992).
[62] A. R. MacDairmid, M. C. Gallagher and J. T. Banks, “Structure of dithiothreitol monolayers on Au (111),” Journal of Physical Chemistry B, Vol. 107, 9789-9792, (2003).
[63] D. C. Daniel, M. Thompson and N. W. Woodbury, “Fluorescence intensity fluctuations of individual labeled DNA fragments and a DNA binding protein in solution at the Single Molecule Level: A Comparison of Photobleaching, Diffusion, and Binding Dynamics,” Journal of Physical Chemistry B, Vol. 104, 1382-1390, (2000).
[64] T. Vosgrone , A. J. Meixner, “Surface and resonance enhanced micro-Raman spectroscopy of xanthene dyes at the single-molecule level,” Journal of Luminescence, Vol. 107, 13-20, (2004).
[65] W. Plieth, H. Dietz, A. Anders, G. Sandmann, A. Meixner, M. Weber and H. Kneppe, “Electrochemical preparation of silver and gold nanoparticles: Characterization by confocal and surface enhanced Raman microscopy,” Surface Science, Vol. 597, 119-126, (2005).
[66] 吳民耀,劉威志,「表面強化拉曼散射」,物理雙月刊,2期4卷,486-495,2006。
[67] 陳彥夫,「修飾有分子探針之金奈米粒子的表面增顯拉曼散射技術進行Protein A免疫分析」,國立成功大學碩士論文,2007.
[68] C. Y. Nam, J. Y. Kim, and J. E. Fischer, “Focused Ion-beam platinum nanopatterning for GaN nanowires:Ohmic contact and patterned growth”, Appl. Phys. Lett. ,86, 193112 (2002).
[69] H-D Xiao, H-L Ma, C-S Xue, J. Ma, F-J Zong, X-J Zhang, F. Ji, “Synthesis and structural properties of GaN powders”, Materials Chemistry and Physics, 88, 180-184 (2004).
[70] S. D. Wolter, J. M. DeLucca, S. E. Mohney, R. S. Kern and C. P. Kuo, “An investigation into the early stages of oxide growth on gallium nitride”, Thin Solid Films, 371, 153-160 (2000).
[71] H. T. Tung, I. G. Chen, J. M. Song and C. W. Yen,” Thermally assisted photoreduction of vertical silver nanowires”, J. Mater. Chem., 19, 2386–2391(2009)
[72] C.W. Kuo, J.Y. Shiu, K.H. Wei, and P. Chen, ”Functional Silver Nanowires for Live Cell Study”, Chem Lett.,37,6,610(2008)
[73] L. Y. Cao, B. Garipcan, E. M. Gallo, S. S. Nonnenmann, B. Nabet, J. E.Spanier, Nano Lett., 8, 601,(2008).
[74] E. J. Zeman and G. C. Schatz,“ An Accurate Electromagnetic Theory Study of Surface Enhancement Factors for Ag, Au, Cu, Li, Na, AI, Ga, In, Zn, and Cd “J. Phys. Chem., 91,634-643(1987).
[75] Z. Q. Tian, Z. L. Yang, Bin Ren, and D.Y. Wu ,“SERS From Transition Metals and Excited by Ultraviolet Light”, Chin.Sci.Bull. ,47,1983(2002).
[76] J. Fang, Y. Yi, B. Ding, and X. Song, “A route to increase the enhancement factor of surface enhanced Raman scattering (SERS) via a high density Ag flower-like pattern,” Appl. Phys. Lett. , Vol. 92, 131115,(2008).
[77] R.E. Steven, E.H. William and S. Nie,” Direct Observation of Size-Dependent Optical Enhancement in Single Metal Nanoparticles”, J. Am. Chem. Soc.120 8009–8010(1998)
[78] S.Nie and Emory S R “Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering”,Science ,275,1102(1997)
[79] S.R. Emory and Nie S,” Screening and Enrichment of Metal Nanoparticles with Novel Optical Properties”, J. Phys. Chem. B., 102, 493-497(1998)
[80] E. Smith and G. Dent, ”Resonance Raman Scattering”, Modern Raman Spectroscopy:A practical Approach, 114(2005)
[81] M. A. Khan, T. P. Hogan and B. Shanker,” Surface-enhanced Raman scattering from gold-coated germanium oxide nanowires” ,J Raman Spectrosc.,39,893(2008)
[82] William G. Moffatt, “The handbook of binary phase diagrams”, Schenectady, New York: Geniurn Pub (1990).
[83] P. Hildebrandt, M.Stockburger ,“Surface-Enhanced Resonance Raman Spectroscopy of Rhodamine 6G Adsorbed on Colloidal Silver“J. Phys. Chem. ,88 ,5983(1984)
[84] T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays”Nature (London) 391, 667 (1998).
[85] W.C. Tan,T.W.Preist,J. R. Sambles, and N.P. Wanstall,”Flat surface-plasmon-polariton bands and resonant optical absorption on short-pitch metal gratings”, Phys. Rev. B 59, 12661 (1998).
[86] J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission Resonances on Metallic Gratings with Very Narrow Slits”Phys. Rev. Lett. 83, 2845 (1999).
[87] W. C. Tan, T. W. Preist, and R. J. Sambles, “Resonant tunneling of light through thin metal films via strongly localized surface plasmons”Phys. Rev. B 62, 11134 (2000).
[88] L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K.M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays”,Phys. Rev. Lett. 86, 1114 (2001).
[89] W.C. Liu, D. P. Tsai, “Optical tunneling effect of surface plasmon polaritons and localized surface plasmon resonance”, Phys. Rev. B ,65, 155423 (2002).
[90] J. P. Kottmann, J.F. Martin, D.R. Smith and S. Schultz, “Plasmon resonances of silver nanowires with a nonregular cross section” Phys. Rev. B 64, 235402 (2001)
校內:2015-07-26公開