簡易檢索 / 詳目顯示

研究生: 邱冠豪
Chiu, Kuan-Hao
論文名稱: Reissner混合變分原理無網格適點與無元素Galerkin方法之發展與其在功能性梯度材料板殼三維靜動態行為分析之應用
Development of Reissner’s Mixed Variational Theorem-Based Meshless Collocation and Element-Free Galerkin Methods as Well as Their Application to Three-Dimensional Static and Dynamic Analyses of Functionally Graded Material Plates and Shells
指導教授: 吳致平
Wu, Chih-Ping
學位類別: 博士
Doctor
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 129
中文關鍵詞: Reissner混合變分原理無網格方法無元素Galerkin方法適點法再生核功能性梯度材料撓曲振動
外文關鍵詞: RMVT, Meshless methods, Element-free Galerkin methods, Collocation methods, Reproducing kernels, Functionally graded material, Plates, Bending, Vibration
相關次數: 點閱:128下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文發展基於Reissner混合變分原理(Reissner’s Mixed Variational Theorem, RMVT)之無網格適點與無元素Galerkin方法,其中各場量變數相應之形狀函數則引用微分再生核(Differential Reproducing Kernel, DRK)函數予以建構,文中該二方法亦應用於功能性梯度材料板之三維靜、動態行為分析。此三維彈性力學問題經由Reissner混合變分原理獲得強形式問題相應之Euler-Lagrange方程式和可能的邊界條件,與弱形式問題相應之加權殘餘積分式,其中各獨立層之材料性質考慮沿厚度方向為冪級數律分佈。DRK內插法中,各主變數相應之形狀函數是由具有Kronecker Delta性質的原始函數(The Primitive Function)與滿足再生條件的改善函數(The Enrichment Function)所組成,可方便於幾何邊界條件的代入,與有限元素法的用法相似。以DRK內插函數代入RMVT無網格適點與無元素Galerkin方法中,求得該二方法相關之系統方程,進而求得相關之三維數值解。文中對無網格方法應用時相關之關鍵參數,諸如:最佳影響範圍(a)、節點數(Np)與基底函數階數(n),均有討論,並作出合宜之建議。數值範例的結果顯示,該二方法求得之解與文獻中既有之三維解有相當一致的結果且收斂迅速。

    A meshless collocation (MC) and an element-free Galerkin (EFG) method, using the differential reproducing kernel (DRK) interpolation, are developed for the three-dimensional (3D) static and dynamic analyses of simply supported, multilayered composite and functionally graded material (FGM) plates. Based on the Reissner Mixed Variational Theorem (RMVT), the strong and weak formulations of these 3D problems are derived, in which the material properties of each individual FGM layer, constituting the plate, are assumed to obey the power-law distributions of the volume fractions of the constituents. The system equations of both the RMVT-based MC and EFG methods are obtained using these strong and weak formulations, respectively, in combination with the DRK interpolation, in which the shape functions of the unknown functions satisfy the Kronecker delta properties, and the essential boundary conditions can be readily applied, exactly like the implementation in the finite element method. In the illustrative examples, the primary field variables and their variations, the natural frequencies and their corresponding modal field variables varying along the thickness coordinate of the plate are studied. It is shown that the solutions obtained using these methods are in excellent agreement with the available 3D solutions, and their convergence rates are rapid.

    Abstract...................................................I 中文摘要..................................................II 誌謝.....................................................III 目錄......................................................IV 表目錄...................................................VII 圖目錄..................................................VIII 第一章 緒論...............................................1 1.1 研究動機與文獻回顧..............................1 1.2 本文內容.......................................5 第二章 Reissner混合變分原理...............................7 2.1 基本三維彈性力學方程式..........................7 2.2 Reissner能量函數...............................8 2.3 RMVT強形式方程式..............................10 2.3.1 動態分析............................10 2.3.2 靜態分析............................13 2.4 RMVT弱形式方程式..............................15 2.4.1 動態分析............................15 2.4.2 靜態分析............................16 第三章 微分再生核(DRK)內插法..............................18 3.1 微分再生核近似法...............................18 3.1.1 DRK近似函數.........................18 3.1.2 DRK近似導函數.......................20 3.2 微分再生核內插法...............................22 3.2.1 DRK內插函數.........................23 3.2.2 DRK內插導函數.......................25 3.3 加權函數......................................27 第四章 應用問題解析........................................29 4.1 雙傅立葉級數方法展開...........................29 4.1.1動態分析.............................29 4.1.2靜態分析.............................30 4.2 無網格適點法..................................31 4.2.1 動態分析............................31 4.2.2 靜態分析............................34 4.3 無元素Galerkin方法............................36 4.3.1 動態分析............................36 4.3.2 靜態分析............................39 第五章 數值範例與綜合討論...................................41 5.1 動態分析......................................41 5.1.1 正向性材料三明治層板.................41 5.1.2 複合層板............................42 5.1.3 功能性材料三明治板...................44 5.2 靜態分析……..................................45 5.2.1 複合層板............................45 5.2.1.1 Pagano驗證範例............45 5.2.1.2 Demasi驗證範例............47 5.2.2功能性梯度材料單層板..................49 5.2.3功能性梯度材料多層疊合板..............51 第六章 電磁彈材料雙曲率層殼靜態問題解析......................53 6.1 三維電磁彈性力學基本方程式......................53 6.2 無因次化......................................56 6.3 數值範例與應用.................................59 6.4 雙傅立葉級數展開...............................60 6.5 多層疊合電磁彈材料殼...........................61 6.6 功能性電磁彈材料殼.............................64 第七章 結論................................................67 參考文獻..................................................69 表........................................................85 圖.......................................................103 附錄A....................................................124 附錄B....................................................126 附錄C....................................................127 自述.....................................................128

    Atluri, S.N.: The Meshless Local Petrov-Galerkin (MLPG) Method for Domain & Boundary Discretizations, Tech Science Press, Forsyth, GA, pp. 700, 2004.
    Atluri, S.N.; Cho, J.Y.; Kim, H.G.: Analysis of thin beams, using the meshless local Petrov- Galerkin method, with generalized moving least squares interpolations. Comput. Mech., vol. 24, pp. 334_347, 1999.
    Atluri, S.N.; Liu, H.T.; Han, Z.D.: Meshless local Petrov-Galerkin (MLPG) mixed collocation method for elasticity problems. CMES: Comput. Mech. Eng. Sci., vol. 14, pp. 141_152, 2006a.
    Atluri, S.N.; Liu, H.T.; Han, Z.D.: Meshless local Petrov-Galerkin (MLPG) mixed finite difference method for solid mechanics. CMES: Comput. Mech. Eng. Sci., vol. 15, pp. 1_16, 2006b.
    Atluri, S.N.; Shen, S.: The Meshless Local Petrov-Galerkin (MLPG) Method. Forsyth, Tech Science Press, 2002.
    Atluri, S.N.; Zhu, T.: A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics. Comput. Mech., vol. 22, pp. 117_127, 1998.
    Atluri, S.N.; Zhu, T.: The meshless local Petrov-Galerkin (MLPG) approach for solving problems in elasto-statics. Comput. Mech., vol. 25, pp. 169_179, 2000a.
    Atluri, S.N.; Zhu, T.: New concepts in meshless methods. Int. J. Numer. Meth. Engng., vol. 47, pp. 537_556, 2000b.
    Atluru, N.R.: A point collocation method based on reproducing kernel approximations. Int. J. Numer. Meth. Eng., vol. 47, pp. 1083_1121, 2000.

    Aydogdu M.: A new shear deformation theory for laminated composite plates. Compos. Struct., vol. 89, pp. 94_101, 2009.
    Batra, R.C.; Jin, J.: Natural frequencies of a functionally graded anisotropic rectangular plate. J. Sound. Vib., vol. 282, pp. 509_516, 2005.
    Batra, R.C.; Vidolis, S.: Higher-order piezoelectric plate theory derived from a three- dimensional variational principle. AIAA J., vol. 40, pp. 91_104, 2002.
    Belinha, J.; Dinis, L.M.J.S.: Analysis of plates and laminates using the element-free Galerkin method. Comput. Struct., vol. 84, pp. 1547_1559, 2006.
    Belinha, J.; Dinis, L.M.J.S.: Nonlinear analysis of plates and laminates using the element-free Galerkin method. Compos. Struct., vol. 78, pp. 337_350, 2007.
    Belytschko, T.; Krongauz, Y.; Organ, D.; Fleming, M.; Krysl, P.: Meshless methods: An overview and recent developments. Comput. Methods Appl. Mech. Engrg., vol. 139, pp. 3_47, 1996.
    Belytschko, T.; Lu, Y.Y.; Gu, L.: Element-Free Galerkin Methods. Int. J. Numer. Meth. Engng., vol. 37, pp. 229_256, 1994.
    Bhangale, R.K.; Ganesan, N.: Static analysis of simply supported functionally graded and layered magneto-electro-elastic plates. Int. J. Solids Struct., vol. 43, pp. 3230_3253, 2006.
    Boroomand, B.; Najjar, M.; , E.:The generalized finite point method. Comput. Mech., vol. 44, pp. 173_90, 2009.
    Brischetto, S.; Carrera, E.: Refined 2D models for the analysis of functionally graded piezo- electric plates. J. Int. Mater. Sys. Struct., vol. 20, pp. 1783_1797, 2009.
    Brischetto, S.; Carrera, E.: Advanced mixed theories for bending analysis of functionally graded plates. Comput. Struct., vol. 88, pp. 1474_1483, 2010.
    Brischetto, S.; Leetsch, R.; Carrera, E.; Wallmersperger, T.; , B.: Thermo- mechanical bending of functionally graded plates. J. Therm. Stresses, vol. 31, pp. 286_308, 2008.
    Carrera, E.: A study of transverse normal stress effect on vibration of multilayered plates and shells. J. Sound. Vib., vol. 225, pp. 803_829, 1999.
    Carrera, E.: An assessment of mixed and classical theories on global and local response of multilayered orthotropic plates. Compos. Struct., vol. 50, pp.183_198, 2000a.
    Carrera, E.: Single-layer vs. multi-layers plate modelings on the basis of Reissner’s Mixed Theorem. AIAA J., vol. 38, pp. 342_352, 2000b.
    Carrera, E.: Developments, ideas and evaluations based upon the Reissner’s mixed variational theorem in the modeling of multilayered plates and shells. Appl. Mech. Rev., vol. 54, pp. 301_ 329, 2001.
    Carrera, E.: Historical review of zig-zag theories for multilayered plates and shells. Appl. Mech. Rev., vol. 56, pp. 287-308, 2003a.
    Carrera, E.: Theories and finite elements for multilayered plates and shells: A unified compact formulation with numerical assessment and benchmarks. Arch. Comput. Methods Eng., vol. 10, pp. 215_296, 2003b.
    Carrera, E.: Assessment of theories for free vibration analysis of homogeneous and multilayered plates. Shock. Vib., pp. 261_270, 2004.
    Carrera, E.; Brischetto, S.; Robaldo, A.: Variable kinematic model for the analysis of function- nally graded material plates. AIAA J., vol. 46, pp. 194_203, 2008.
    Carrera, E.; Demasi, L.: Classical and advanced multilayered plate elements based upon PVD and RMVT. Part 1: Derivation of finite element matrices. Int. J. Numer. Methods Eng., vol. 55, pp. 191_231, 2002a.
    Carrera, E.; Demasi, L.: Classical and advanced multilayered plate elements based upon PVD and RMVT. Part 2: Numerical implementations. Int. J. Numer. Methods Eng., vol. 55, pp. 253_91, 2002b.
    Carrera, E.; Demasi, L.; Manganello, M.: Assessment of plate elements on bending and vibrations of composite structures. Mech. Adv. Mater. Struct., vol. 9, pp. 333_357, 2001.
    Castro, L.M.S.; Ferreira, A.J.M.; Bertoluzza, S.; Batra, R.C.; Reddy, J.N.: A wavelet collocation method for the static analysis of sandwich plates using a layerwise theory. Compos. Struct., vol. 92, pp. 1786_1792, 2010.
    Chen, J.S.; Pan, C.; Wu, C.T.; Liu, W.K.: Reproducing kernel particle methods for large deformation analysis of non-linear structures. Comput. Methods Appl. Mech. Engrg., vol. 139, pp. 195_227, 1996.
    Chen, W.Q.; Lee, K.Y.: Alternative state space formulations for magnetoelectric thermoelasticity with transverse isotropy and the application to bending analysis of nonhomogeneous plates. Int. J. Solids Struct., vol. 40, pp. 5689_5705, 2003.
    Dai, K.Y.; Liu, G.R.; Han, X.; Lim, K.M.: Thermomechanical analysis of functionally graded material (FGM) plates using element-free Galerkin method. Comput. Struct., vol.83, pp. 1487_ 1502, 2005.
    De, S.; Bathe, K.J.:The method of finite spheres. Comput. Mech., vol. 25, pp. 329_345, 2000.
    Demasi, L.: Quasi-3D analysis of free vibration of anisotropic plates. Compos. Struct., vol. 74, pp. 449_457, 2006.
    Demasi, L.: ∞3 hierarchy plate theories for thick and thin composite plates: The
    generalized unified formulation. Compos. Struct., vol. 84, pp. 256_270, 2008.
    Demasi, L.: ∞ 6 mixed plate theories based on the Generalized Unified Formulation. Part
    I: Governing equations. Compos. Struct., vol. 87, pp. 1_11, 2009a.
    Demasi, L.: ∞ 6 mixed plate theories based on the Generalized Unified Formulation. Part
    II: Layerwise theories. Compos. Struct., vol. 87, pp. 12_22, 2009b.
    Demasi, L.: ∞ 6 mixed plate theories based on the Generalized Unified Formulation. Part
    III: Advanced mixed high order shear deformation theories. Compos. Struct., vol. 87, pp.
    183_194, 2009c.
    Demasi, L.: ∞ 6 mixed plate theories based on the Generalized Unified Formulation. Part
    IV: Zig- zag theories. Compos. Struct., vol. 87, pp. 195_205, 2009d.
    Demasi, L.: ∞ 6 mixed plate theories based on the Generalized Unified Formulation. Part
    V: Results. Compos. Struct., vol. 88, pp. 1_16, 2009e.
    Ferreira, A.J.M.: A formulation of the multiquadric radial basis function method for the analysis of laminated composite plates. Compos. Struct., vol. 59, pp. 385_392, 2003.
    Ferreira, A.J.M.; Batra, R.C.; Roque, C.M.C.; Qian, L.F.; Jorge, R.M.N.: Natural frequencies of functionally graded plates by a meshless method. Compos. Struct., vol. 75, pp. 593_600, 2006.
    Ferreira, A.J.M.; Batra, R.C.; Roque, C.M.C.; Qian, L.F.; Martins, P.A.L.S.: Static analysis of functionally graded plates using third-order shear deformation theory and a meshless method. Compos. Struct., vol. 69, pp. 449_457, 2005.
    Ferreira, A.J.M.; Fasshauer, G.E.: Analysis of natural frequencies of composite plates by an RBF-pseudospectral method. Compos. Struct., vol. 79, pp. 202_210, 2007.
    Ferreira, A.J.M.; Fasshauer, G.E.; Batra, R.C.; Rodrigues, J.D.: Static deformations and vibration analysis of composite and sandwich plates using a layerwise theory and RBF-PS discrete- zations with optimal shape parameter. Compos. Struct., vol. 86, pp. 328_343, 2008.
    Ferreira, A.J.M.; Roque, C.M.C.; Jorge, R.M.N.: Natural frequencies of FSDT cross-ply composite shells by multiquadrics. Compos. Struct., vol. 77, pp. 296_305, 2007.
    Ferreira, A.J.M.; Roque, C.M.C.; Jorge, R.M.N.; Fasshauer, G.E.; Batra, R.C.: Analysis of functionally graded plates by a robust meshless method. Mech. Adv. Mater. Struct., vol. 14, pp.577_ 587, 2007.
    Ferreira, A.J.M.; Roque, C.M.C.; Martins, P.A.L.S.: Radial basis functions and higher-order shear deformation theories in the analysis of laminated composite beams and plates. Compos. Struct., vol.66, pp. 287_293, 2004.
    Gilhooley, D.F.; Batra, R.C.; Xiao, J.R.; McCarthy, M.A.; Gillespie Jr., J.W.: Analysis of thick functionally graded plates by using higher-order shear and normal deformable plate theory and MLPG method with radial basis functions. Compos. Struct., vol. 80, pp. 539_552, 2007.
    Gu, Y.T.; Liu, G.R.: A local point interpolation method for static and dynamic analysis of thin beams. Comput. Methods Appl. Mech. Eng., vol. 190, pp. 5515_5528, 2001.
    Han, Z.D.; Atluri, S.N.: Meshless local Petrov-Galerkin (MLPG) approaches for solving 3D problems in elasto-dynamics. CMC: Comput. Mater. Continua., vol. 1, pp. 129_140, 2004a.
    Han, Z.D.; Atluri, S.N.: Meshless local Petrov-Galerkin (MLPG) approaches for solving 3D problems in elasto-statics. CMES: Comput. Mech. Eng. Sci., vol. 6, pp. 169_188, 2004b.
    Han, Z.D.; Rajendran, A.M., Atluri, S.N.: Meshless local Petrov-Galerkin (MLPG) approaches for solving nonlinear problems with large deformation and rotation. CMES: Comput. Mech. Eng. Sci., vol. 10, pp. 1_12, 2005.
    Heyliger, P.R.; Pan, E.: Static fields in magnetoelectroelastic laminates. AIAA J., vol. 42, pp. 1435_1443, 2004.
    Heyliger, P.R.; Ramirez, F.; Pan, E.: Two-dimensional static fields in magnetoelectro- elastic laminates. J. Intell. Mater. Syst. Struct., vol. 15, pp. 689_709, 2004.
    Hill, R.: A self-consistent mechamics of composite material. J. Mech. Phys. Solids, vol. 13, pp. 213-222, 1965.
    Hyer, M.W.: Stress analysis of fiber-reinforced composite materials. New York, McGraw-Hill, 1998.
    Karama, M. Afaq, K.S.; Mistou, K.S.: Mechanical behavior of laminated composite beam by new multi-layered composite structures model with transverse shear stress continuity. Int. J. Solids Struct., vol. 40, pp. 1525_1546, 2003.
    Kashtalyan, M.: Three-dimensional elasticity solution for bending of functionally graded rectangular plates. Eur. J. Mech. A/Solids, vol. 23, pp. 853_864, 2004.
    Kim, D.W.; Kim, Y.: Point collocation methods using the fast moving least-square reproducing kernel approximation. Int. J. Numer. Methods Eng., vol. 56, pp. 1445_1464, 2003.
    , C.F.; Chen, W.Q.; Shao, J.W.: Semi-analytical three-dimensional elasticity solutions for generally laminated composite plates. Eur. J. Mech. A/Solids, vol. 27, pp. 899_917, 2008.
    , C.F.; Huang, Z.Y.; Chen, W.Q.: Semi-analytical solutions for free vibration of anisotropic laminated plates in cylindrical bending. J. Sound Vib., vol. 304, pp. 987_995, 2007.
    Lancaster, P.; Salkauakas, K.: Surfaces generated by moving least squares methods. Math. Comput., vol. 37, pp. 141_158, 1981.
    Lee, C.; Kim, D.W.; Park, S.H.; Kim, H.K.; Im, C.H.; Jung, H.K.: Point collocation mesh-free using FMLSRKM for solving axisymmetric Laplace equation. IEEE Trans. Magnetics, vol. 44, pp. 1234_1237, 2008.
    Levinson, M.: An accurate simple theory of statics and dynamics of elastic plates. Mech. Res. Commun., vol. 7, pp. :343_350, 1980.
    Li, H.; Ng, T.Y.; Cheng, J.Q.; Lam, K.Y.: Hermite_Cloud a novel true meshless method. Comput. Mech, vol. 33, pp. 30_41, 2003.
    Li, Q.; Iu, V.P.; Kou, K.P.: Three-dimensional vibration analysis of functionally graded material sandwich plates. J. Sound Vib., vol. 311, pp. 498_515, 2008.
    Li, S.; Liu, W.K.: Moving least-square reproducing kernel method (II) Fourier analysis. Comput. Methods Appl. Mech. Eng., vol. 139, pp. 159_193, 1996.
    Li, S.; Liu, W.K.: Synchronized reproducing kernel interpolant via multiple wavelet expansion. Comput. Mech., vol. 21, pp. 28_47, 1998.
    Li, S.; Liu, W.K.: Reproducing kernel hierarchical partition of unity, Part I-Formulation and theory. Int. J. Numer. Methods Eng., vol. 45, pp. 251_288, 1999a.
    Li, S.; Liu, W.K.: Reproducing kernel hierarchical partition of unity, Part II-Applications. Int. J. Numer. Methods Eng., vol. 45, pp. 289_317, 1999b.
    Li, S.; Liu, W.K.: Meshfree and particle methods and their applications. Appl. Mech. Rev., vol. 55, pp. 1_34, 2002.
    Liu, G.R.; Gu, Y.T.: A point interpolation method for two-dimensional solids. Int. J. Numer. Methods Eng., vol. 50, pp. 937_951, 2001.
    Liu, G.R.; Gu, Y.T.: An Introduction to Meshfree Methods and Their Programming. Netherlands, Springer, pp. 479, 2005.
    Liu, L.; Chua, L.P. Ghista, D.N.: Mesh-free radial basis function method for static, free vibration and buckling analysis of shear deformable composite laminates. Compos. Struct., vol. 78, pp. 58_69, 2007.
    Liu, W.K.; Jun, S.; Li, S.; Adee J.; Belytschko, T.: Reproducing kernel particle methods for structural dynamics. Int. J. Numer. Meth. Engng., vol. 38, pp. 1655_1679, 1995.
    Liu, W.K.; Jun, S.; Zhang, Y.F.: Reproducing kernel particle methods. Int. J. Numer. Meth. Engng., vol. 20, pp. 1081_1106, 1995.
    Liu, W.K.; Li, S.; Belytschko, T.: Moving least-square reproducing kernel methods (I) Methodology and convergence. Comput. Methods Appl. Mech. Eng., vol. 143, pp. 113_154, 1997.
    Liu, X.; Tai, K.: Point interpolation collocation method for the solution of partial differential equations. Eng. Anal. Bound. Elem. vol. 30, pp. 598_609, 2006.
    Liszka, T.J.; Duarte, C.A.M.; Tworzydlo, W.W.: hp-meshless cloud method. Comput. Methods Appl. Mech. Engng., vol. 139, pp. 263_88, 1996.
    Lucy, L.B.: A numerical approach to the testing of fission hypothesis. Astronomical J., vol. 82, pp. 1013-1024, 1977.
    Mindlin, R.D.: Influence of rotatory inertia and shear in flexural motion of isotropic elastic plates. J. Appl. Mech., vol. 18, pp. 1031_1036, 1951.
    Monaghan, J.J.: An introduction to SPH. Comput. Phy. Commun., vol. 48, pp. 89_96, 1988.
    Mori, T.; Tanaka, K.: Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta. Metall., vol. 21, pp.571_574, 1973.
    Nayroles, B.; Touzot, G.; Villon, P.: Generalizing the finite element method: diffuse approximation and diffuse elements. Comput. Mech., vol. 10, pp. 307-318, 1992.
    Noor, A.K.; Burton, W.S.: Assessment of computational models for multilayered anisotropic plates. Compos. Struct, vol. 14, pp. 233_265, 1990.
    Noor, A.K.; Burton, W.S.: Computational models for high-temperature multilayered composite plates and shells. Appl. Mech. Rev., vol. 45, pp. 419_446, 1992.
    Noor, A.K.; Burton, W.S.; Bert, C.W.: Computational model for sandwich panels and shells. Appl. Mech. Rev., vol. 49, pp. 155_199, 1996.
    , E.; Idelsohn, S.; Zienkiewicz, O.C.; Taylor, R.L.: A finite point method in computational mechanics_Applications to convective transport and fluid flow. Int. J. Numer. Meth. Engng. vol. 39, pp. 3839_3866, 1996.
    , E.; Perazzo F, Miquel J.: A finite point method for elasticity problems. Comput. Struct., vol. 79, pp. 2151_63, 2001.
    Pagano, N.J.: Exact solutions for rectangular bidirectional composites and sandwich plates. J. Compos. Mater., vol. 4, pp. 20_34, 1970.
    Pan, E.: Exact solution for simply supported and multilayered magneto-electro-elastic plates. J. Appl. Mech., vol. 68, pp. 608_618, 2001.
    Pan, E.: Exact solution for functionally graded anisotropic elastic composite laminates. J. Compos. Mater., vol. 37, pp. 1903_1920, 2003.
    Pan, E.; Han, F.: Exact solution for functionally graded and layered magneto-electro- elastic plates. Int. J. Eng. Sci., vol. 43, pp. 321_339, 2005.
    Pan, E.; Heyliger, P.R.: Free vibration of simply supported and multilayered magneto- electro-elastic plates. J. Sound Vib., vol. 252, pp. 429_442, 2002.
    Pan, E.; Heyliger, P.R.: Exact solutions for magneto-electro-elastic laminates in cylindrical bending. Int. J. Solids Struct., vol. 40, pp. 6859_6876, 2003.
    Pandya, B.N.; Kant, T.: Higher-order shear deformable theories for flexure of sandwich plates- finite element evaluation. Int. J. Solids Struct., vol. 24, pp. 419_451, 1988.
    Qian, L.F.; Batra, R.C.; Chen, L.M.: Analysis of cylindrical bending thermoelastic deformations of functionally graded plates by a meshless local Petro-Galerkin method. Comput. Mech., vol. 33, pp. 263_273, 2004.
    Qatu, M.: Recent research advances in the dynamic behavior of shells: 1989-2000, Part 1: Laminated composite shells. Appl. Mech. Rev., vol. 55, pp. 325_349, 2002a.
    Qatu, M.: Recent research advances in the dynamic behavior of shells: 1989-2000, Part 2: Homogeneous shells. Appl. Mech. Rev., vol. 55, pp. 415_434, 2002b.
    Qatu, M.; Sullivan, R.W.; Wang, W.: Recent research advances on the dynamic analysis of composite shells: 2000-2009. Compos. Struct., vol. 93, pp. 14_31, 2010.
    Ramirez, F.; Heyliger, P.R. Pan, E.: Discrete layer solution to free vibrations of functionally graded magneto-electro-elastic plates. Mech. Adv. Mater. Struct., vol. 13, pp. 249_266. 2006a.
    Ramirez, F.; Heyliger, P.R.; Pan, E.: Static analysis of functionally graded elastic anisotropic plates using a discrete layer approach. Compos. Part B: Eng., vol. 37, pp. 10_20, 2006b.
    Reddy, J.N.: A simple higher-order theory for laminated composite plates. J. Appl. Mech., vol. 51, pp. 745_752, 1984.
    Roque, C.M.C.; Ferreira, A.J.M.; Jorge, R.M.N.: A radial basis function approach for the free vibration analysis of functionally graded plates using a refined theory. J. Sound Vib., vol. 300, pp. 1048_1070, 2007.
    Shan, Y.Y.; Shu, C.; Lu, Z.L.: Application of local MQ-DQ method to solve 3D incompressible viscous flows with curved boundary. CMES: Comput. Mech. Eng. Sci., vol. 25, pp. 99_113, 2008.
    Shu, C.; Ding, H.; Yeo, K.S.: Local radial basis function-based differential quadrature method and its application to solve two-dimensional incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Engrg., vol. 192, pp. 941_954, 2003.
    Shu, C.; Ding, H.; Yeo, K.S.: Computation of incompressible Navier-Stokes equations by local RBF-based differential quadrature method. CMES: Comput. Mech. Eng. Sci., vol. 7, pp. 195_205, 2005.
    Sladek, J.; Sladek, V.; Solek, P.; Wen, P.H.: Thermal bending of Reissner-Mindlin plates by the MLPG. CMES: Comput. Mech. Eng. Sci., vol. 28, pp. 57_76, 2008.
    Sladek, J.; Sladek, V.; Solek, P.; Wen, P.H.; Atluri, S.N.: Thermal analysis of Reissner-Mindlin shallow shells with FGM properties by MLPG. CMES: Comput. Mech. Eng. Sci., vol. 30, pp. 77_97, 2008.
    Sladek, J.; Sladek, V.; Wen, P.H.; Aliabadi, M.H.: Meshless local Petrov-Galerkin (MLPG) method for shear deformable shells. CMES: Comput. Mech. Eng. Sci., vol. 13, pp. 103_117, 2006.
    Sladek, J.; Sladek, V.; Zhang, C.; Tan, C.L.: Meshless local Petrov-Galerkin method for linear coupled thermoelastic analysis. CMES: Comput. Mech. Eng. Sci., vol. 16, pp. 57_68, 2006.
    Srinivas, S.; Rao, A.K.: Bending, vibration and buckling of simply supported thick orthotropic rectangular plates and laminates. Int. J. Solids Struct., vol. 6, pp. 1463_1481, 1970.
    Touratier, M.: An efficient standard plate theory. Int. J. Eng. Sci., vol. 29, pp. 901_ 916, 1991.
    Tsai, Y.H.; Wu, C.P.: Dynamic responses of functionally graded magneto-electro-elastic shells with open-circuit surface conditions. Int. J. Eng. Sci., vol. 46, pp. 843_857, 2008a.
    Tsai, Y.H.; Wu, C.P.: Three-dimensional analysis of doubly curved functionally graded magneto- electro-elastic shells. Eur. J. Mech. A/Solids, vol. 27, pp. 75_105, 2008b.
    Vel, S.S.; Batra, R.C.: Three-dimensional exact solution for the vibration of functionally graded rectangular plates. J. Sound Vib., vol. 272, pp. 703_730. 2004.
    Vel, S.S.; Mewer, R.C.; Batra, R.C.: Analytical solution for the cylindrical bending vibration of piezoelectric composite plates. Int. J. Solids Struct., vol. 41, pp. 1625_1643, 2004.
    Wang, Q.X.; Li, H.; Lam, K.Y.:Development of a new meshless_point weighted least squares (PWLS) method for computational mechanics. Comput. Mech., vol. 35, pp. 170_181, 2005.
    Wang, Y.M.; Chen, S.M.; Wu, C.P.: A meshless collocation method based on the differential reproducing kernel interpolation. Comput. Mech., vol. 45, pp. 585_606, 2010.
    Wang, Y.M.; Yang, S.W.; Wu, C.P.; Hu, H.T.: A meshless collocation method based on the differential reproducing kernel approximation. Comput. Model Eng. Sci., vol. 60, pp.1_39, 2010.
    Whitney, J.M.; Pagano, N.J.: Shear deformation in heterogeneous anisotropic plates. J. Appl. Mech., vol. 37, pp. 1031_1036, 1970.
    Wu, C.P.; Chen, S.J.; Chiu, K.H.: Three-dimensional static behavior of functionally graded magneto-electro-elastic plates using the modified Pagano method. Mech. Res. Commun., vol. 37, pp. 54_60, 2010.
    Wu, C.P.; Chiu, K.H.; Wang, Y.M.: A differential reproducing kernel particle method for the analysis of multilayered elastic and piezoelectric plates. CMES: Comput. Modeling Eng. Sci., vol. 27, pp. 163_186, 2008a.
    Wu, C.P.; Chiu, K.H.; Wang, Y.M.: A meshfree DRK-based collocation method for the coupled analysis of functionally graded magneto-electro-elastic shells and plates. CMES: Comput. Modeling Eng. Sci., vol. 35, pp. 181_214, 2008b.
    Wu, C.P.; Chiu, K.H.; Wang, Y.M.: A review on the three-dimensional analytical approaches of multilayered and functionally graded piezoelectric plates and shells. CMC: Comput. Mater. Continua, vol. 8, pp. 93_132, 2008c.
    Wu, C.P.; Chiu, K.H.; Wang, Y.M.: RMVT-based meshless collocation and element-free Galerkin methods for the quasi-3D analysis of multilayered composite and FGM plates. Compos. Struct., vol. 93, pp. 1433_1448, 2010.
    Wu, C.P.; Chiu, S.J.: Thermally induced dynamic instability of laminated composite conical shells. Int. J. Solids Struct., vol. 39, pp. 3001_3021, 2002.
    Wu, C.P.; Huang, S.E.: Three-dimensional solutions of functionally graded piezo-thermo- elastic shells and plates using a modified Pagano method. Comput. Mater. Continua., vol. 12, pp. 251_282, 2009.
    Wu, C.P.; Li, H.Y.: The RMVT- and PVD-based finite layer methods for the three-dimensional analysis of multilayered composite and FGM plates. Compos Struct, vol. 92, pp. 2476_2496, 2010a.
    Wu, C.P.; Li, H.Y.: An RMVT-based third-order shear deformation theory of multilayered functionally graded material plates. Compos. Struct., vol. 92, pp. 2591_2605, 2010b.
    Wu, C.P.; Liu, K.Y.: A state space approach for the analysis of doubly curved functionally graded elastic and piezoelectric shells. Comput. Mater. & Continua., vol. 6, pp. 177_199, 2007.
    Wu, C.P.; Lu, Y.C.: A modified Pagano method for the 3D dynamic responses of functionally graded magneto-electro-elastic plates. Compos. Struct., vol. 90, pp. 363_372, 2009.
    Wu, C.P.; Lo, J.Y.: An asymptotic theory for dynamic response of laminated piezoelectric shells. Acta. Mech., vol. 183, pp. 177_208, 2006.
    Wu, C.P.; Syu, Y.S.: Exact solutions of functionally graded piezoelectric shells under cylindrical bending. Int. J. Solids Struct., vol. 44, pp. 6450_6472, 2007.
    Wu, C.P.; Tsai, Y.H.: Static behavior of functionally graded magneto-electro-elastic shells under electric displacement and magnetic flux. Int. J. Eng. Sci., vol. 45, pp. 744_769, 2007.
    Wu, C.P.; Tsai, Y.H.: Cylindrical bending vibration of functionally graded piezoelectric shells using the method of perturbation. J. Eng. Math., vol. 63, pp. 95_119, 2009.
    Wu, C.P.; Tsai, Y.H.: Dynamic responses of functionally graded magneto-electro-elastic shells with closed-circuit surface conditions using the method of multiple scales. Eur. J. Mech. A/Solids, vol. 29, pp. 166_181, 2010.
    Wu, C.P.; Wang, J.S.; Wang, Y.M.: A DRK interpolation-based collocation method for the analysis of functionally graded piezoelectric hollow cylinders under electro-mechanical loads. CMES: Comput. Modeling Eng. Sci., vol. 52, pp. 1_37, 2009.
    Wu, L.; Li, H.; Wang, D.: Vibration analysis of generally laminated composite plates by the moving least squares differential quadrature method. Compos. Struct., vol. 68, pp. 319_330, 2005.
    Wu, L.; Wang, H.; Wang, D.: Dynamic stability analysis of FGM plates by the moving least squares differential quadrature method. Compos. Struct., vol. 77, pp. 383_394, 2007.
    Xiang, S.; Wang, K.M.; Ai, Y.T.; Sha, Y.D.; Shi, H.: Analysis of isotropic, sandwich and laminated plates by a meshless method and various shear deformation theories. Compos. Struct., vol. 91, pp. 31_37, 2009.
    Xiao, J.R.; Gilhooley, D.F.; Batra, R.C.; Gillespie, Jr. J.W.; McCarthy, M.A.: Analysis of thick composite laminates using a higher-order shear and normal deformable plate theory (HOSNDPT) and a meshless method. Compos. Part B: Eng., vol. 39, pp. 414_427, 2008.
    Yang, S.W.; Wang, Y.M.; Wu, C.P.: A meshless collocation method based on the differential reproducing kernel approximation. CMES: Comput. Modeling Eng. Sci., vol. 60, pp. 1_39, 2010.
    Zenkour, A.M.: Generalized shear deformation theory for bending analysis of functionally graded plates. Appl. Math. Model., vol. 30, pp. 67-84, 2006.
    Zhang, X.; Liu, X.H.; Song, K.Z.; Lu, M.W.: Least-squares collocation meshless method. Int. J. Numer. Methods Eng., vol. 51, pp. 1089_1100, 2001.
    Zhang, X.; Song, K.Z.; Lu, M.W.; Liu, X.: Meshless methods based on collocation with radial basis functions. Comput. Mech., vol. 26, pp. 333_343, 2000.

    下載圖示 校內:2012-07-13公開
    校外:2013-07-13公開
    QR CODE