簡易檢索 / 詳目顯示

研究生: 洪儷倩
Hung, Lih-Chien
論文名稱: 以比特幣期貨波動率與跨市場因子預測股價崩盤風險
Forecasting Stock Market Crash Risk Using Bitcoin Futures Volatility and Cross-Market Indicators
指導教授: 顏盟峯
Yen, Meng-Feng
學位類別: 碩士
Master
系所名稱: 管理學院 - 財務金融研究所
Graduate Institute of Finance
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 44
中文關鍵詞: 股價崩盤風險比特幣期貨波動率恐慌指數金銀比變動量成交量變 動率
外文關鍵詞: crash risk, bitcoin futures volatility, VIX, gold-silver ratio change, turnover rate volatility
相關次數: 點閱:22下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著金融市場變動日益劇烈,傳統風險指標已逐漸難以完整捕捉潛在崩盤風險。本研究旨在探討來自加密貨幣市場與傳統避險資產的跨市場因子,是否具備預測美國股市崩盤風險的能力。具體而言,選取恐慌指數(VIX)、比特幣期貨波動率(BTCF_VOL)、金銀比變動量(∆GSR)與成交量變動率(VOR)為主要自變數,評估其對最大累積跌幅(CMAX)、報酬負偏態(NCSKEW)與報酬波動不對稱(DUVOL)三項崩盤風險指標的預測效果。
    研究期間涵蓋2018年至2025年,共1,506筆交易日資料,採用多元線性迴歸模型進行實證分析。為檢驗模型穩健性,本研究進行兩項強韌性檢定:一為調整比特幣期貨波動率計算視窗(由7日改為5日),二為針對比特幣第三次至第四次減半週期(2020年5月至2024年4月)進行樣本切割,以評估事件期間的模型適用性。
    實證結果顯示,比特幣期貨波動率(BTCF_VOL)在三項崩盤風險指標上皆具穩健且顯著的正向預測能力,展現其前瞻性與系統性風險預警價值。VIX與NCSKEW及DUVOL呈顯著正相關,能有效反映市場恐慌與左尾風險,與CMAX的負相關則顯示其對最大跌幅存在滯後解釋效果。相較之下,金銀比變動量與成交量變動率多數結果未達顯著,顯示其預測力可能受限於特定事件條件與樣本結構。此外,Plosser(1982)指出多數總體經濟變數往往具有非定態(nonstationary)特性,金銀比亦可能隨樣本區間或事件條件而呈現結構性不穩定,此特徵或為其預測效果缺乏一致性的原因之一。
    本研究建議,未來可結合非線性計量模型、機器學習演算法與鏈上數據分析,強化對金融市場複雜結構、高度連動性及跨資產傳染效應之監測與預測能力。同時,也可持續優化風險衡量工具與樣本切割設計,進一步提升模型在極端市況與動態變化下的外部適用性與預警效度。

    This study evaluates the predictive power of key cross-market risk indicators—including the CBOE Volatility Index (VIX), Bitcoin futures realized volatility (BTCF_VOL), gold-silver ratio (∆GSR), and S&P 500 turnover oscillation rate (VOR)—for U.S. stock market crash risk. Using multivariate linear regression and 1,506 daily observations (2018–2025), crash risk is proxied by cumulative maximum drawdown (CMAX), negative conditional skewness (NCSKEW), and down-to-up volatility ratio (DUVOL). Robustness is assessed by adjusting volatility windows and analyzing event-driven subsamples like the Bitcoin halving cycle.
    Results indicate BTCF_VOL is a robust, forward-looking indicator, with significant positive associations across all crash risk measures. VIX is positively related to NCSKEW and DUVOL, capturing investor fear and left-tail risk, while its negative link with CMAX suggests a lagged response to losses. ∆GSR and VOR lack consistent predictive power, with their utility mainly event-driven.
    These findings highlight the value of integrating crypto-asset volatility with conventional indicators in crash risk warning systems. Future research should adopt nonlinear models, machine learning, and on-chain analytics to further enhance predictive accuracy and systemic risk monitoring, especially in volatile or rapidly changing markets.

    中文摘要 i Abstract ii 誌謝 vii 目錄 viii 表目錄 ix 第一章 緒論 1 第一節 研究動機 1 第二節 研究目的 2 第三節 研究架構 3 第二章 文獻探討 4 第一節 恐慌指數 4 第二節 比特幣 5 第三節 金銀比 6 第四節 成交量變動率 7 第五節 崩盤指標 8 第三章 研究方法與研究設計 10 第一節 資料來源、樣本選取及研究期間 10 第二節 研究模型 10 第三節 應變數介紹 10 第四節 自變數介紹 12 第四章 研究結果 13 第一節 敘述性統計 13 第二節 相關係數分析 13 第三節 回歸結果 15 第五章 結論 26 第一節 結論 26 第二節 研究建議與研究限制 28 參考文獻 30

    李建興、黃玉珂與林依潔(2015),VIX指數作為擇時指標之探討—以台灣與中國股票市場為例。兩岸金融季刊,3(2),1–25。
    韓傳祥(2013),金融中波動率的數學問題。數學傳播,37(1),26–40。
    羅進水(2019),基金經理人從眾行為與股價崩盤風險。商管科技季刋,20(4),371–401。
    Alp, A., Canbaloglu, H., & Gurgun, G. (2022). Market liquidity and crash risk: Evidence from emerging markets. International Review of Financial Analysis, 82, 102164.
    Baker, S. R., Bloom, N., Davis, S. J., & Terry, S. J. (2020). COVID-induced economic uncertainty. National Bureau of Economic Research Working Paper, No. 26983. Retrieved March 28, 2021 from http://www.nber.org/papers/w26983
    Bali, T. G., Demirtas, K. O., & Levy, H. (2009). Is there an intertemporal relation between downside risk and expected returns? Journal of Financial and Quantitative Analysis, 44(4), 883–909.
    Barberis, N., Shleifer, A., & Vishny, R. (2005). A model of investor sentiment. Journal of Financial Economics, 49(3), 307–343.
    Boehmer, E., Musumeci, J., & Poulsen, A. B. (1991). Event-study methodology under conditions of event-induced variance. Journal of Financial Economics, 30(2), 253–272.
    Boscaljon, B., G. Filbeck, and X. Zhao (2011) “Market timing using the VIX for style rotation,” Financial Services Review, 20, 35–44.
    Bouri, E., Molnár, P., Azzi, G., Roubaud, D., & Hagfors, L. I. (2017). On the hedge and safe haven properties of Bitcoin: Is it really more than a diversifier? Finance Research Letters, 20, 192–198.
    Campbell, J. Y., Grossman, S. J., & Wang, J. (1993). Trading volume and serial correlation in stock returns. The Quarterly Journal of Economics, 108(4), 905–939.
    Chen, J., Hong, H., & Stein, J. C. (2001). Forecasting crashes: Trading volume, past returns, and conditional skewness in stock prices. Journal of Financial Economics, 61(3), 345–381.
    Chordia, T., Roll, R., & Subrahmanyam, A. (2005). Evidence on the speed of convergence to market efficiency. Journal of Financial Economics, 76(2), 271–292.
    Chung, H., & Kim, S. (2012). The relationship between stock market volatility and trading volume: Evidence from the U.S. stock market. Journal of Financial Markets, 15(3), 435–456.
    Conrad, J. S., Hameed, A., & Niden, C. (1994). Volume and autocovariances in short-horizon individual security returns. Journal of Finance, 49(4), 1305–1329.
    Copeland, T. E. (1999). Valuation: Measuring and managing the value of companies (2nd ed.). Wiley Finance.
    Dolvin, S. D., & Foltice, B. C. (2023). Revisiting the role of the VIX in asset allocation. Journal of Portfolio Management, 49(2), 75–88.
    Duan, J. C., & Yeh, C. Y. (2010). Jump and volatility risk premiums implied by VIX. Journal of Economic Dynamics and Control, 34(11), 2232–2244.
    Estrada, A. (2017). Effect of sentiment on Bitcoin price formation. Duke Journal of Economics, 29, 1–24.
    Fauzi, F., & Wahyudi, S. (2016). Determinants of stock price crash risk: Evidence from Indonesia. International Journal of Economics and Financial. 6(4), 30–35.
    Fleming, J., B., Ostdiek, and R., E., Whaley, (1995), “Predicting Stock Market Volatility: A New Measure”, Journal of Futures Markets, 3(15),265–302.
    Garbade, K. D., & Silber, W. L. (1983a). Price movements and discovery in futures and cash markets. Review of Economics and Statistics, 65(2), 289–297.
    Garbade, K. D., & Silber, W. L. (1983b). Dominant and satellite markets: A study of dually-traded securities. Review of Economics and Statistics, 65(3), 455–460.
    Gervais, S., Kaniel, R., & Mingelgrin, D. H. (2001). The high-volume return premium. The Journal of Finance, 56(3), 877–919.
    Guo, F., & Liu, Y. (2020). Crash risk in the cryptocurrency market: Is Bitcoin different? Finance Research Letters, 33, 101396.
    Hutton, A. P., Marcus, A. J., & Tehranian, H. (2009). Opaque financial reports, R², and crash risk. Journal of Financial Economics, 94(1), 67–86.
    Jubinski, D., & Lipton, A. F. (2013). VIX, gold, silver, and oil: How do commodities reflect volatility shocks? Journal of Accounting and Finance, 13(5), 44–54.
    Karpoff, J.M. (1987) The Relation between Price Changes and Trading Volume: A Survey. Journal of Financial and Quantitative Analysis, 22, 109–126.
    Kim, J. B., Li, Y., & Zhang, L. (2011). Corporate tax avoidance and stock price crash risk: Firm-level analysis. Journal of Financial Economics, 100(3), 639–662.
    Nelson. C. R & Plosser. C. R.(1982). Trends and random walks in macroeconomic time series: some evidence and implications. Journal of monetary economics,10(2), 139-162.
    Lucey, B. M., & Li, S. (2015). What precious metals act as safe havens, and when? Applied Economices Letters, 22(1), 35–45.
    MacKinlay, A. C. (1997). Event studies in economics and finance. Journal of Economic Literature, 35(1), 13–39.
    Menchetti, F., Cipollini, F., & Mealli, F. (2021). Causal effect of regulated Bitcoin futures on volatility and volume. Unpublished doctoral dissertation, Cornell University.
    Nguyen, T. H. (2020). Exploring the short-term momentum effect in the cryptocurrency market. Evolutionary and Institutional Economics Review, 17(2), 425–443.
    Patel, S., & Sarkar, A. (1998). Crashes and volatility in Indian stock markets. International Journal of Development Banking, 16(1), 35–44.
    Qadan, M. and G. Cohen (2011) Is it profitable to invest according to the VIX fear index? Journal of Modern Accounting and Auditing, 7(1), 86–90.
    Vila, A. (2012). Systemic risk and bank regulation: The missing links. Journal of Banking & Finance, 36(2), 349–357.
    Whaley, R. E. (2000). The Investor Fear Gauge. The Journal of Portfolio Management, 26(3), 12–17.
    Whaley, R. E. (2009). Understanding the VIX. Journal of Portfolio Management, 35(3), 98–105.
    Yarovaya, L., Matkovskyy, R., & Jalan, A. (2021). The effects of crypto market and media attention on stock market liquidity: A quantile-on-quantile approach. International Review of Financial Analysis, 76, 101743.
    Yaya, O. S., Alimi, R. S., & Ogbonna, A. E. (2021). Investigating the relationship between gold, silver and the US stock market: A wavelet coherence approach. Resources Policy, 70, 101914.
    Zhang, Q., Liu, H., & Zhao, Y. (2022). Cross-asset contagion during extreme events: Evidence from Bitcoin, gold, and equity markets. Journal of International Financial Markets, Institutions and Money, 76, 101465.
    Zhang, W., Zhao, Y., & Kang, S. H. (2023). Bitcoin futures and market efficiency: New evidence from nonlinear dynamic modeling. Journal of Futures Markets, 43(2), 147–164.
    Zouaoui, M., Nouyrigat, G., & Beer, F. (2010). Understanding analysts’ overoptimism: The role of company-specific optimism and market factors. International Review of Financial Analysis, 19(4), 229–237.
    劉祥航(2022),看比特幣趨勢做美股?歷史數據顯示比特幣更早見頂與觸底。鉅享網。線上檢索時期:2023年2月5日。網址:https://news.cnyes.com/news/id/5044237
    黃于庭(2024年11月12日),全球狂買數位資產 幣安11月資金淨流入破50億美元。工商時報。線上檢索時期:2024年12月31。網址:https://www.ctee.com.tw/news/20241112700719-430303
    加密城市(2024),3月升息會議在今晚!比特幣急殺6.1萬,分析師:若美聯準做「這件事」恐跌更多。鉅享網。線上檢索時期:2024年3月21。網址:https://news.cnyes.com/news/id/5499717
    Binance Research. (2024). Monthly capital inflow report – November 2024. Retrieved (June 15, 2025) from https://research.binance.com/
    Bloomberg. (2023). Gold-silver ratio spikes as investors flee to safety amid geopolitical tensions. Bloomberg.com. Retrieved (June 15, 2025) from https://www.bloomberg.com/
    Cointelegraph. (2025). Bitcoin price volatility ramps up around FOMC days — Will this time be different? Retrieved (May 5, 2025) from https://www.cointelegraph.com
    Delphi Digital. (2022). Crypto outlook 2022: Market timing and macro sensitivity analysis. Retrieved (May 5, 2025) from https://www.delphidigital.io/research/
    McGlone, M. (2020). Bloomberg Crypto Outlook: Bitcoin $10,000 Gaining Support, June 2020 Edition. Bloomberg Intelligence. Retrieved (June 15, 2025) from https://www.bloomberg.com/professional/blog/bloomberg-crypto-outlook-june-2020/
    van ’t Klooster, J., Martino, E. D., & Monnet, E. (2025). Cryptomercantilism vs. Monetary Sovereignty: Dealing with the Challenge of US Stablecoins for the EU (PE 760.274). European Parliament. Retrieved (June 2025) from https://www.europarl.europa.eu/RegData/etudes/STUD/2025/760274/ECTI_STU(2025)760274_EN.pdf

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE