簡易檢索 / 詳目顯示

研究生: 陳羿宏
Chen, Yi-Hong
論文名稱: 含質量框架之薄膜超穎材料聲音穿透分析
Sound Transmission of Membrane-type Acoustic Metamaterials with Multiple Frame Masses
指導教授: 陳蓉珊
Chen, Jung-San
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 61
中文關鍵詞: 聲學超穎材料穿透損失
外文關鍵詞: acoustic, metamaterial, transmission loss
相關次數: 點閱:126下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,聲學超穎材料在低頻時表現出非常良好的隔音效能。低頻噪音通常伴隨著動力機械的運轉產生,而傳統厚重的水泥牆是很難達成阻擋這類型的噪音干擾,但是如果使用聲學超穎材料,就能很容易達成這個目標。雖然這些超穎材料的結構很輕、很薄,但依然可以有效的阻隔聲音傳遞。在本篇論文中,使用Abaqus有限元素分析模擬結構共振模態與對應的自然頻率,並探討對於隔音效果的影響,進一步推測薄膜與中心質量與穿透損失曲線的關係。我們調整了中心質量的重量與面積,以及作用於薄膜邊界上的張力,還有多個薄膜層疊或是平放排列後對穿透損失曲線的影響。更進一步的將中心質量改為方框的形式,以及同時鑲嵌中心質量與框架質量對傳遞損失造成的效果,還有同時鑲嵌兩個質量的狀況,都能夠看到藉由切割薄膜區域帶來的影響,進而產生多個有效的隔音頻率。

    In recent years, acoustic metamaterials have displayed superior sound insulation quality at low frequencies. Low frequency noise is often associated with machines when they are being operated. It is hard to prevent this type of disturbance with a traditional heavy concrete wall. It is much easier to achieve this using acoustic metamaterials. Although the structure of these metamaterials is light and thin, they still work well for insulating noise. In this thesis, we use finite element analysis to simulate membrane-type acoustic metamaterials in order to explore the quality of sound insulation of acoustic metamaterials. We then discuss the relationship of the membrane and the mass corresponding to the transmission loss (TL) curve. We adjusted the mass weight, area and the tension forced on the edges of the membrane, and considered the effect on the TL curve with multiple cell arrangements, stacks and arrays. Furthermore, the central mass of the structure was replaced by the frame mass, and we considered the structure with both central mass and frame mass or a membrane inlaid with two masses.

    中文摘要      I Abstract II Acknowledgment III List of Figures VI List of Tables VIII Nomenclature X CHAPTER 1 INTRODUCTION 1 1.1 Research Motivation and Method 1 1.2 Literature Reviews 1 1.3 Chapter Outline 3 CHAPTER 2 THEORY 5 2.1 Fundamental Theory of Sound Transmission 5 2.1.1 Mass law 5 2.1.2 Membrane-type acoustic metamaterials 10 2.2 Basic Formulations of Finite Element Simulations 12 2.2.1 Modal analysis 12 2.2.2 Steady-state analysis 15 CHAPTER 3 FINITE ELEMENT SIMULATIONS 18 3.1 Introduction of Abaqus 18 3.2 Finite Element Modeling and Analysis 20 3.2.1 Vibration analysis of membrane 21 3.2.2 Transmission analysis of membrane-type metamaterials 22 3.2.3 Transmission analysis of multiple cells 26 CHAPTER 4 NUMERICAL RESULTS 28 4.1 Natural Frequencies and Natural Modes of a Membrane with a Central Mass 28 4.2 Sound Transmission of Membrane-type Metamaterials 33 4.2.1 Transmission loss of a single cell 33 4.2.2 Transmission loss of multiple cells 42 4.2.3 Transmission loss of a membrane with central mass and frame mass 48 CHAPTER 5 CONCLUSION 57 References 59

    [1] C. J. Naify, C. M. Chang, G. McKnight, and S. Nutt. (2010). “Transmission loss and dynamic response of membrane-type locally resonant acoustic metamaterials”, J. Appl. Phys. 108, 114905.

    [2] Z. Yang, H. M. Dai, N. H. Chan, G. C. Ma, and Ping Sheng. (2010). “Acoustic metamaterial panels for sound attenuation in the 50-1000 Hz regime”, Appl. Phy. Lett. 96, 041906.

    [3] C. J. Naify, C. M. Chang, G. McKnight, and S. Nutt. (2011). “Transmission loss of membrane-type acoustic metamaterials with coaxial ring masses”, J. Appl. Phys. 110, 124903.

    [4] Y. Zhang, J. Wen, Y. Xiao, X. Wen, and J. Wang. (2012). “Theoretical investigation of the sound attenuation of membrane-type acoustic metamaterials”, Phys. Lett. A 376, 1489-1494.

    [5] Y. Zhang, J. wen, H. Zhao, D. Yu, L. Cai, and X. Wen. (2013). “Sound insulation property of membrane-type acoustic metamaterials carrying different masses at adjacent cells”, J. Appl. Phys. 114, 063515.

    [6] H. Tian, X. Wang, Y. H. Zhou. (2014). ”Theoretical model and analytical approach for a circular membrane-ring structure of locally resonant acoustic metamaterial”, Appl. Phys. A. 114, 985-990.

    [7] Frank J. Fahy. (1987). “Sound and Structural vibration: Radiation, Transmission and Response”, Academic Press, London 144-149.

    [8] Abaqus 6.12 Analysis User’s Manual Volume : Introduction, Spatial Modeling, Execution & Output.

    [9] C. J. Naify, C. M. Chang, G. McKnight, and S. Nutt and F. Scheulen. (2011). “Membrane-type metamaterials: Transmission loss of multi-celled arrays”, J. Appl. Phys. 109, 104902.

    [10] C. J. Naify, C. M. Chang, G. McKnight and S. Nutt. (2011). “Acoustic analysis of honeycomb sandwich structures with perforated septa and membrane-type acoustic metamaterials”, J. Acoust. Soc. Am. 129, 2417-2417.

    [11] C. J. naify, C. M. Chang and G. McKnight, S. R. Nutt. (2012). "Scaling of membrane-type locally resonant acoustic metamaterial arrays", J. Acoust. Soc. Am. 132, 2784-2792.

    [12] H. H. Huang and C. T. Sun. (2009). ”Wave attenuation mechanism in an acoustic metamaterial with negative mass density”, New J. Phys. 11, 013003.

    [13] J. Mei, Z. Liu, W. Wen, and P. Sheng. (2006). “Effective Mass Density of Fluid-Solid Composites”, Phys. Rev. Lett. 96, 024301.

    [14] J. A. Moore and R. H Lyon. (1991). “Sound transmission loss characteristics of sandwich panel constrictions,” J. Acoust. Soc. Am. 89, 777–791.

    [15] J. V. Sanchez-Perez, D. Caballero, R. Martinez-Sala, C. Rubio, J. Sanchez-Dehesa, F. Meseguer, J. Linares, and F. Galvez. (1998). “Sound attenuation by a two-dimensional array of rigid cylinders”, Phys. Rev. Lett. 80, 5325–5328.

    [16] K. Idrisi, M. E. Johnson, A. Toso, and J. P. Carneal, (2009). “ Increase in transmission loss of a double panel system by addition of mass inclusions to a poro-elastic layer: A comparison between theory and experiment,” J. Sound Vib. 323, 51–66.

    [17] L. E. Kinsler, A. R. Frey, A. B. Coppens, and J. V. Sanders. (1982). “Fundamental of Acoustics”, John Wiley & Sons, New York.

    [18] M. Hirsekorn, P. P. Delsanto, N.K. Batra, P. Matic. (2003). ”Modeling and simulation of acoustic wave propagation in locally resonant sonic materials”, Ultrasonics, 42, 231-235.

    [19] P. Wennhage. (2003). “Weight optimization of large scale sandwich structures with acoustic and mechanical constraints,” J. Sandwich Struct. Mater. 5, 253–266.

    [20] S. H. Lee, C. M. Park, Y. M. Seo, Z. G. Wang, and C. K. Kim1. (2010). "Composite Acoustic Medium with Simultaneously Negative Density and Modulus", Phys. Rev. Lett. 104, 054301.

    [21] X. Zhou and G. Hu. (2009). “Analytic model of elastic metamaterials with local resonances”, Phys. Rev. B, 79, 195109.

    [22] Y. Chen, G. Huang, X. Zhou and G. Hu, and C. T. Sun. (2013). “Analytical coupled vibroacoustic modeling of membrane-type acoustic metamaterials: plate model”. Cond. Mat. Soft, 1310.8026.

    [23] Z. Yang, J. Mei, M. Yang, N. H. Chan, and P. Sheng. (2008). “Membrane-type acoustic metamaterial with negative dynamic mass”, Phys. Rev. Lett. 101, 204301.

    下載圖示 校內:2015-09-05公開
    校外:2015-09-05公開
    QR CODE