簡易檢索 / 詳目顯示

研究生: 張仁德
Chang, Jen-Te
論文名稱: MnBi2Te4薄膜缺陷結構之研究
The study of defect structures in MnBi2Te4 grown thin films
指導教授: 黃榮俊
Huang, Jung-Chun Andrew
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 111
中文關鍵詞: MnBi2Te4內稟反鐵磁性拓墣絕緣體分子束磊晶掃描穿隧電子顯微鏡螺旋成長機制氫蝕刻缺陷調控
外文關鍵詞: MnBi2Te4, antiferromagnetic topological insulator, MBE, STM, spiral growth mechanism, hydrogen etching, defect engineering
相關次數: 點閱:90下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • MnBi2Te4 是第一個內稟反磁性拓墣絕緣體,被廣泛視為實現許多奇異量子態的基石,且作為二維層狀材料,凡德瓦異質結構為其帶來豐富的可調性。雖然近年在理論預測和實驗證實上取得了非凡的成功,該材料仍然存在許多的爭議未解。另一方面,現今主流研究都專注在該材料的塊材上,使得該材料的薄膜基本性質一直沒有被完整的探索。在此,我們首次的使用了掃描穿隧顯微鏡和掃描穿隧能譜研究了 MnBi2Te4 薄膜的螺旋成長機制與本質的缺陷結構,這些缺陷包含:二維的分數層截面缺陷、一維的晶粒邊界、一維的螺旋錯位與零維的點缺陷。除此之外,我們更進一步地使用了氫蝕刻證實了表面重構的機制與推斷了該反應的中間過程。這些研究將為缺陷調控與薄膜本質的結構性缺陷提供了新的認知,希望能有助於目前極具爭議的開放問題。

    MnBi2Te4, the first intrinsic antiferromagnetic topological insulator, is regarded as a promising building block for exotic quantum states and 2D nature features for its turnability in van der Waal heterostructure engineering. Despite recent significant advances in experimental realization and theoretical prediction, numerous discrepancies remain unresolved. On the other hand, the majority of research focuses on bulk materials, leaving the thin film counterpart unexplored. For the first time, the spiral growth mechanism and native defect structure of a thin film sample are characterized using a scanning tunneling microscope and scanning tunneling spectroscopy. These defects include two-dimensional fractional termination, one-dimensional grain boundary, one-dimensional screw dislocation, and zero-dimensional point defect. By utilizing hydrogen etching, we were able to confirm the mechanism of surface reconstruction and deduce the intermediate process. Our findings shed new light on defect engineering and intrinsic defect structure in thin film samples, with the hope of resolving the open issue.

    中文摘要 i Abstract ii Acknowledgements iii Contents iv List of Figures vii 1 Introduction 1 1.1 Overview 1 1.2 IQHE and Topological Interpretation 1 1.3 Symmetry-Protected Topological Phase 2 1.4 Quantum Spin Hall State 3 1.5 Toward the Quantum Anomalous Hall Effect 4 1.6 Experimental Realization of QAHE 5 1.7 Intrinsic Magnetic Topological Insulator 7 1.8 Realization of MBT’s Exotic Quantum State 9 1.9 MBT’s superlattice family 10 1.10 Chemical substitution 11 1.11 Open Issue 12 1.12 MBT Surface Characterization 13 1.13 Surface Collapse and Reconstruction 19 1.14 Motivation 22 2 Theoretical Aspects of Instrumentation 23 2.1 Scan Tunneling Microscope(STM) 23 2.2 Simple Model for Quantum Tunneling 23 2.3 Wentzel-Kramers-Brilliouin (WKB) approximation 25 2.4 Landauer-Bu¨ttiker formalism 27 2.5 Bardeen’s theory of tunneling 129 2.6 Experimental Realization of STS 35 2.7 Energy resolution of STS 36 2.8 Spin-Polarized Tunneling 38 2.9 STS compare with ARPES 40 3 Experimental Equipment 44 3.1 JEOL STM system 44 3.2 Tip Preparation 46 3.3 Hydrogen Thermal Cracking Gun 47 3.4 Homemade Tungsten Outgas Filament 47 3.5 Spin-Polarized STM 48 3.6 Sample Preparation 50 3.7 STM Measurement Process 50 4 Results and Discussion 52 4.1 Basic STM Morphology characterization 52 4.2 Basic STS Analysis of MBT 54 4.3 Spiral Growth Mechanism 56 4.4 2D Fractional Layer study 59 4.4.1 Early Investigation of Fractional Layer Termination 59 4.4.2 Fractional Termination in MBT 63 4.5 1D Grain Boundary 66 4.5.1 Early investigation of Grain Boundary 67 4.5.2 Grain Boundary in MBT 70 4.6 Defect Engineering by Hydrogen Etching 73 4.6.1 Large Area Morphology Evolution 73 4.6.2 Zero Dimensional Point Defect Morphology 77 4.6.3 Summary of the Micro-Mechanism of Hydrogen Etching 78 4.6.4 Engineering-induced Defect STS Spectrum 80 4.6.5 Overall STS Evolution by Hydrogen Etching 82 4.7 Spin-Polarized STM (Optional) 84 4.8 Surface absorption (Optional) 86 5 Conclusions 87 References 88

    [1] Julian Chen. Introduction to Scanning Tunneling Microscopy Third Edition, volume 69. Oxford University Press, USA, 2021.
    [2] Bert Voigtl¨ander. Scanning probe microscopy: Atomic force microscopy and scanning tunneling microscopy. Springer, 2015.
    [3] J-Q Yan, Qiang Zhang, Thomas Heitmann, Zengle Huang, KY Chen, J-G Cheng, Weida Wu, David Vaknin, Brian C Sales, and Robert John McQueeney. Crystal growth and magnetic structure of MnBi2Te4. Phys. Rev. Materials, 3(6):064202, 2019.
    [4] Yonghao Yuan, Xintong Wang, Hao Li, Jiaheng Li, Yu Ji, Zhenqi Hao, Yang Wu, Ke He, Yayu Wang, Yong Xu, Wenhui Duan, Wei Li, and Qi-Kun Xue. Electronic states and magnetic response of MnBi2Te4 by scanning tunneling microscopy and spectroscopy. Nano Letters, 20(5):3271–3277, 2020. PMID: 32298117.
    [5] Xuefeng Wu, Jiayu Li, Xiao-Ming Ma, Yu Zhang, Yuntian Liu, Chun-Sheng Zhou, Jifeng Shao, Qiaoming Wang, Yu-Jie Hao, Yue Feng, Eike F. Schwier, Shiv Kumar, Hongyi Sun, Pengfei Liu, Kenya Shimada, Koji Miyamoto, Taichi Okuda, Kedong Wang, Maohai Xie, Chaoyu Chen, Qihang Liu, Chang Liu, and Yue Zhao. Distinct topological surface states on the two terminations of MnBi4Te7. Phys. Rev. X, 10:031013, Jul 2020.
    [6] Zengle Huang, Mao-Hua Du, Jiaqiang Yan, and Weida Wu. Native ddefects in antiferromagnetic topological insulator MnBi2Te4. Phys. Rev. Materials, 4:121202, Dec 2020.
    [7] Fuchen Hou, Qiushi Yao, Chun-Sheng Zhou, Xiao-Ming Ma, Mengjiao Han, Yu-Jie Hao, Xuefeng Wu, Yu Zhang, Hongyi Sun, Chang Liu, et al. Te-vacancy induced surface collapse and reconstruction in antiferromagnetic topological insulator MnBi2Te4. ACS Nano, 14(9):11262–11272, 2020.
    [8] Y. Liu, M.Weinert, and L. Li. Spiral growth without dislocations: Molecular beam epitaxy of the topological insulator Bi2Se3 on epitaxial Graphene/SiC(0001). Phys. Rev. Lett., 108:115501, Mar 2012.
    [9] Xie-Gang Zhu, Yun Zhang, Wei Feng, Bing-Kai Yuan, Qin Liu, Rui-Zhi Qiu, Dong-Hua Xie, Shi-Yong Tan, Yu Duan, Yun Fang, et al. Electronic structures of topological insulator Bi2Te3 surfaces with non-conventional terminations. New Journal of Physics, 18(9):093015, 2016.
    [10] T. Fukasawa, S. Kusaka, K. Sumida, M. Hashizume, S. Ichinokura, Y. Takeda, S. Ideta, K. Tanaka, R. Shimizu, T. Hitosugi, and T. Hirahara. Absence of ferromagnetism in MnBi2Te4/Bi2Te3 down to 6 K. Phys. Rev. B, 103:205405, May 2021.
    [11] Y. Liu, Y. Y. Li, S. Rajput, D. Gilks, L. Lari, P. L. Galindo, M. Weinert, V. K. Lazarov, and L. Li. Tuning Dirac states by strain in the topological insulator Bi2Se3. Nature Physics, 10(4):294–299, Apr 2014.
    [12] Jun Zhang, Junbo Cheng, Shuaihua Ji, and Yeping Jiang. Visualizing the in-gap states in domain boundaries of ultra-thin topological insulator films. Chinese Physics Letters, 38(7):077301, 2021.
    [13] K. v. Klitzing, G. Dorda, and M. Pepper. New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance. Phys. Rev. Lett., 45:494–497, Aug 1980.
    [14] D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs. Quantized Hall conductance in a two-dimensional periodic potential. Phys. Rev. Lett., 49:405– 408, Aug 1982.
    [15] M. Z. Hasan and C. L. Kane. Colloquium: Topological insulators. Rev. Mod. Phys., 82:3045–3067, Nov 2010.
    [16] Xiao-Liang Qi and Shou-Cheng Zhang. Topological insulators and superconductors. Rev. Mod. Phys., 83:1057–1110, Oct 2011.
    [17] Libor Sˇmejkal, Yuriy Mokrousov, Binghai Yan, and Allan H MacDonald. Topological antiferromagnetic spintronics. Nature physics, 14(3):242–251, 2018.
    [18] Dmytro Pesin and Allan H MacDonald. Spintronics and pseudospintronics in graphene and topological insulators. Nature materials, 11(5):409–416, 2012.
    [19] C. L. Kane and E. J. Mele. Z2 topological order and the quantum spin Hall effect. Phys. Rev. Lett., 95:146802, Sep 2005.
    [20] Liang Fu. Topological crystalline insulators. Phys. Rev. Lett., 106:106802, Mar 2011.
    [21] Y Tanaka, Zhi Ren, T Sato, K Nakayama, S Souma, T Takahashi, Kouji Segawa, and Yoichi Ando. Experimental realization of a topological crystalline insulator in snte. Nature Physics, 8(11):800–803, 2012.
    [22] Andreas P. Schnyder, Shinsei Ryu, Akira Furusaki, and Andreas W. W. Ludwig. Classification of topological insulators and superconductors in three spatial dimensions. Phys. Rev. B, 78:195125, Nov 2008.
    [23] Roger S. K. Mong, Andrew M. Essin, and Joel E. Moore. Antiferromagnetic topological insulators. Phys. Rev. B, 81:245209, Jun 2010.
    [24] C. L. Kane and E. J. Mele. Quantum spin Hall effect in graphene. Phys. Rev. Lett., 95:226801, Nov 2005.
    [25] Xiao-Liang Qi, Taylor L Hughes, and Shou-Cheng Zhang. Topological field theory of time-reversal invariant insulators. Phys. Rev. B, 78(19):195424, 2008.
    [26] B Andrei Bernevig. Topological insulators and topological superconductors. Princeton university press, 2013.
    [27] B Andrei Bernevig, Taylor L Hughes, and Shou-Cheng Zhang. Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science, 314(5806):1757–1761, 2006.
    [28] Markus K¨onig, Steffen Wiedmann, Christoph Bru¨ne, Andreas Roth, Hartmut Buhmann, Laurens W Molenkamp, Xiao-Liang Qi, and Shou-Cheng Zhang. Quantum spin Hall insulator state in HgTe quantum wells. Science, 318(5851):766–770, 2007.
    [29] Zaiyao Fei, Tauno Palomaki, Sanfeng Wu, Wenjin Zhao, Xinghan Cai, Bosong Sun, Paul Nguyen, Joseph Finney, Xiaodong Xu, and David H Cobden. Edge conduction in monolayer WTe2. Nature Physics, 13(7):677–682, 2017.
    [30] Shujie Tang, Chaofan Zhang, Dillon Wong, Zahra Pedramrazi, Hsin-Zon Tsai, Chunjing Jia, Brian Moritz, Martin Claassen, Hyejin Ryu, Salman Kahn, et al. Quantum spin Hall state in monolayer 1TI − WTe2. Nature Physics, 13(7):683–687, 2017.
    [31] Liang Fu, Charles L Kane, and Eugene J Mele. Topological insulators in three dimensions. Phys. Rev. Lett., 98(10):106803, 2007.
    [32] J. E. Moore and L. Balents. Topological invariants of time-reversal-invariant band structures. Phys. Rev. B, 75:121306, Mar 2007.
    [33] David Vanderbilt. Berry Phases in Electronic Structure Theory: Electric Polarization, Orbital Magnetization and Topological Insulators. Cambridge University Press, 2018.
    [34] Feng Tang, Hoi Chun Po, Ashvin Vishwanath, and Xiangang Wan. Comprehensive search for topological materials using symmetry indicators. Nature, 566(7745):486–489, 2019.
    [35] MG Vergniory, L Elcoro, Claudia Felser, Nicolas Regnault, B Andrei Bernevig, and Zhijun Wang. A complete catalogue of high-quality topological materials. Nature, 566(7745):480–485, 2019.
    [36] YL Chen, James G Analytis, J-H Chu, ZK Liu, S-K Mo, Xiao-Liang Qi, HJ Zhang, DH Lu, Xi Dai, Zhong Fang, et al. Experimental realization of a three-dimensional topological insulator Bi2Te3. Science, 325(5937):178–181, 2009.
    [37] Haijun Zhang, Chao-Xing Liu, Xiao-Liang Qi, Xi Dai, Zhong Fang, and Shou-Cheng Zhang. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nature Physics, 5(6):438–442, Jun 2009.
    [38] Yuqi Xia, Dong Qian, David Hsieh, L Wray, Arijeet Pal, Hsin Lin, Arun Bansil, DHYS Grauer, Yew San Hor, Robert Joseph Cava, et al. Observation of a large gap topological-insulator class with a single Dirac cone on the surface. Nature physics, 5(6):398–402, 2009.
    [39] Yoichi Ando. Topological insulator materials. Journal of the Physical Society of Japan, 82(10):102001, 2013.
    [40] Robert Joseph Cava, Huiwen Ji, Michael K Fuccillo, Quinn D Gibson, and Yew San Hor. Crystal structure and chemistry of topological insulators. Journal of Materials Chemistry C, 1(19):3176–3189, 2013.
    [41] Thomas L. Schmidt, Stephan Rachel, Felix von Oppen, and Leonid I. Glazman. Inelastic electron backscattering in a generic helical edge channel. Phys. Rev. Lett., 108:156402, Apr 2012.
    [42] Jan Carl Budich, Fabrizio Dolcini, Patrik Recher, and Bj¨orn Trauzettel. Phonon-induced backscattering in helical edge states. Phys. Rev. Lett., 108:086602, Feb 2012.
    [43] Natalie Lezmy, Yuval Oreg, and Micha Berkooz. Single and multiparticle scattering in helical liquid with an impurity. Phys. Rev. B, 85:235304, Jun 2012.
    [44] Florian Geissler, Fran c¸ois Cr´epin, and Bj¨orn Trauzettel. Random Rashba spin-orbit coupling at the quantum spin Hall edge. Phys. Rev. B, 89:235136, Jun 2014.
    [45] G. M. Gusev, Z. D. Kvon, E. B. Olshanetsky, A. D. Levin, Y. Krupko, J. C. Portal, N. N. Mikhailov, and S. A. Dvoretsky. Temperature dependence of the resistance of a two-dimensional topological insulator in a HgTe quantum well. Phys. Rev. B, 89:125305, Mar 2014.
    [46] Tian-Shu Deng, Lei Pan, Yu Chen, and Hui Zhai. Stability of time-reversal symmetry protected topological phases, 2020.
    [47] Anders Str¨om and Henrik Johannesson. Tunneling between edge states in a quantum spin Hall system. Phys. Rev. Lett., 102:096806, Mar 2009.
    [48] Thomas L. Schmidt. Current correlations in quantum spin Hall insulators. Phys. Rev. Lett., 107:096602, Aug 2011.
    [49] Ajit C. Balram, Karsten Flensberg, Jens Paaske, and Mark S. Rudner. Current-induced gap opening in interacting topological insulator surfaces. Phys. Rev. Lett., 123:246803, Dec 2019.
    [50] B. L. Altshuler, I. L. Aleiner, and V. I. Yudson. Localization at the edge of a 2D topological insulator by Kondo impurities with random anisotropies. Phys. Rev. Lett., 111:086401, Aug 2013.
    [51] Yoichi Tanaka, A. Furusaki, and K. A. Matveev. Conductance of a helical edge liquid coupled to a magnetic impurity. Phys. Rev. Lett., 106:236402, Jun 2011.
    [52] Pietro Novelli, Fabio Taddei, Andre K. Geim, and Marco Polini. Failure of conductance quantization in two-dimensional topological insulators due to nonmagnetic impurities. Phys. Rev. Lett., 122:016601, Jan 2019.
    [53] Yoshinori Tokura, Kenji Yasuda, and Atsushi Tsukazaki. Magnetic topological insulators. Nature Reviews Physics, 1(2):126–143, 2019.
    [54] Masataka Mogi, Minoru Kawamura, Atsushi Tsukazaki, Ryutaro Yoshimi, Kei S Takahashi, Masashi Kawasaki, and Yoshinori Tokura. Tailoring tricolor structure of magnetic topological insulator for robust axion insulator. Science Advances, 3(10):eaao1669, 2017.
    [55] Di Xiao, Jue Jiang, Jae-Ho Shin, Wenbo Wang, Fei Wang, Yi-Fan Zhao, Chaoxing Liu, Weida Wu, Moses H. W. Chan, Nitin Samarth, and Cui-Zu Chang. Realization of the axion insulator state in quantum anomalous Hall sandwich heterostructures. Phys. Rev. Lett., 120:056801, Jan 2018.
    [56] F Duncan M Haldane. Model for a quantum Hall effect without Landau levels: Condensed-matter realization of the ”parity anomaly”. Phys. Rev. Lett., 61(18):2015, 1988.
    [57] Xiao-Liang Qi, Yong-Shi Wu, and Shou-Cheng Zhang. Topological quantization of the spin Hall effect in two-dimensional paramagnetic semiconductors. Phys. Rev. B, 74:085308, Aug 2006.
    [58] Chao-Xing Liu, Xiao-Liang Qi, Xi Dai, Zhong Fang, and Shou-Cheng Zhang. Quantum anomalous Hall effect in Hg1−y MnyTe quantum wells. Phys. Rev. Lett., 101:146802, Oct 2008.
    [59] Xiao-Liang Qi, Taylor L. Hughes, and Shou-Cheng Zhang. Topological field theory of time-reversal invariant insulators. Phys. Rev. B, 78:195424, Nov 2008.
    [60] Rui Yu, Wei Zhang, Hai-Jun Zhang, Shou-Cheng Zhang, Xi Dai, and Zhong Fang. Quantized anomalous Hall effect in magnetic topological insulators. Science, 329(5987):61–64, 2010.
    [61] Kentaro Nomura and Naoto Nagaosa. Surface-quantized anomalous Hall current and the magnetoelectric effect in magnetically disordered topological insulators. Phys. Rev. Lett., 106(16):166802, 2011.
    [62] Ke He, Yayu Wang, and Qi-Kun Xue. Topological materials: quantum anomalous Hall system. Annual Review of Condensed Matter Physics, 9:329–344, 2018.
    [63] Chao-Xing Liu, HaiJun Zhang, Binghai Yan, Xiao-Liang Qi, Thomas Frauenheim, Xi Dai, Zhong Fang, and Shou-Cheng Zhang. Oscillatory crossover from two-dimensional to three-dimensional topological insulators. Phys. Rev. B, 81:041307, Jan 2010.
    [64] Cui-Zu Chang, Jinsong Zhang, Xiao Feng, Jie Shen, Zuocheng Zhang, Minghua Guo, Kang Li, Yunbo Ou, Pang Wei, Li-Li Wang, et al. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science, 340(6129):167–170, 2013.
    [65] Tomasz Dietl, o H Ohno, a F Matsukura, J Cibert, and e D Ferrand. Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science, 287(5455):1019–1022, 2000.
    [66] Xiao Feng, Yang Feng, Jing Wang, Yunbo Ou, Zhenqi Hao, Chang Liu, Zuocheng Zhang, Liguo Zhang, Chaojing Lin, Jian Liao, et al. Thickness dependence of the quantum anomalous Hall effect in magnetic topological insulator films. Advanced Materials, 28(30):6386–6390, 2016.
    [67] Inhee Lee, Chung Koo Kim, Jinho Lee, Simon JL Billinge, Ruidan Zhong, John A Schneeloch, Tiansheng Liu, Tonica Valla, John M Tranquada, Genda Gu, et al. Imaging Dirac-mass disorder from magnetic dopant atoms in the ferromagnetic topological insulator Crx(Bi0.1Sb0.9)2−xTe3. Proceedings of the National Academy of Sciences, 112(5):1316–1321, 2015.
    [68] Ella O Lachman, Andrea F Young, Anthony Richardella, Jo Cuppens, HR Naren, Yonathan Anahory, Alexander Y Meltzer, Abhinav Kandala, Susan Kempinger, Yuri Myasoedov, et al. Visualization of superparamagnetic dynamics in magnetic topological insulators. Science Advances, 1(10):e1500740, 2015.
    [69] Yunbo Ou, Chang Liu, Liguo Zhang, Yang Feng, Gaoyuan Jiang, Dongyang Zhao, Yunyi Zang, Qinghua Zhang, Lin Gu, Yayu Wang, et al. Heavily cr-doped (Bi, Sb)2Te3 as a ferromagnetic insulator with electrically tunable conductivity. Apl Materials, 4(8):086101, 2016.
    [70] Yunbo Ou, Chang Liu, Gaoyuan Jiang, Yang Feng, Dongyang Zhao, Weixiong Wu, Xiao-Xiao Wang, Wei Li, Canli Song, Li-Li Wang, et al. Enhancing the quantum anomalous Hall effect by magnetic codoping in a topological insulator. Advanced materials, 30(1):1703062, 2018.
    [71] S. V. Eremeev, V. N. Men’shov, V. V. Tugushev, P. M. Echenique, and E. V. Chulkov. Magnetic proximity effect at the three-dimensional topological insulator/magnetic insulator interface. Phys. Rev. B, 88:144430, Oct 2013.
    [72] V. N. Men’shov, V. V. Tugushev, S. V. Eremeev, P. M. Echenique, and E. V. Chulkov. Magnetic proximity effect in the three-dimensional topological insulator/ferromagnetic insulator heterostructure. Phys. Rev. B, 88:224401, Dec 2013.
    [73] Ryota Watanabe, Ryutaro Yoshimi, Minoru Kawamura, Masataka Mogi, Atsushi Tsukazaki, XZ Yu, Kiyomi Nakajima, Kei S Takahashi, Masashi Kawasaki, and Yoshinori Tokura. Quantum anomalous Hall effect driven by magnetic proximity coupling in all-telluride based heterostructure. Applied Physics Letters, 115(10):102403, 2019.
    [74] M Mogi, R Yoshimi, A Tsukazaki, K Yasuda, Y Kozuka, KS Takahashi, M Kawasaki, and Y Tokura. Magnetic modulation doping in topological insulators toward higher-temperature quantum anomalous Hall effect. Applied Physics Letters, 107(18):182401, 2015.
    [75] Mikhail M Otrokov, Tatiana V Menshchikova, Maia G Vergniory, Igor P Rusinov, A Yu Vyazovskaya, Yu M Koroteev, Gustav Bihlmayer, Arthur Ernst, Pedro M Echenique, Andr´es Arnau, et al. Highly-ordered wide bandgap materials for quantized anomalous Hall and magnetoelectric effects. 2D Materials, 4(2):025082, 2017.
    [76] Mikhail M Otrokov, Ilya I Klimovskikh, Hendrik Bentmann, D Estyunin, Alexander Zeugner, Ziya S Aliev, S Gaß, AUB Wolter, AV Koroleva, Alexander M Shikin, et al. Prediction and observation of an antiferromagnetic topological insulator. Nature, 576(7787):416–422, 2019.
    [77] MM Otrokov, Igor P Rusinov, Mar´ıa Blanco-Rey, M Hoffmann, A Yu Vyazovskaya, SV Eremeev, A Ernst, Pedro M Echenique, Andr´es Arnau, and Eugene V Chulkov. Unique thickness-dependent properties of the van der Waals interlayer antiferromagnet MnBi2Te4 films. Phys. Rev. Lett., 122(10):107202, 2019.
    [78] Dongqin Zhang, Minji Shi, Tongshuai Zhu, Dingyu Xing, Haijun Zhang, and Jing Wang. Topological axion states in the magnetic insulator MnBi2Te4 with the quantized magnetoelectric effect. Phys. Rev. Lett., 122(20):206401, 2019.
    [79] Jiaheng Li, Yang Li, Shiqiao Du, Zun Wang, Bing-Lin Gu, Shou-Cheng Zhang, Ke He, Wenhui Duan, and Yong Xu. Intrinsic magnetic topological insulators in van der Waals layered MnBi2Te4-family materials. Science Advances, 5(6):eaaw5685, 2019.
    [80] Yan Gong, Jingwen Guo, Jiaheng Li, Kejing Zhu, Menghan Liao, Xiaozhi Liu, Qinghua Zhang, Lin Gu, Lin Tang, Xiao Feng, et al. Experimental realization of an intrinsic magnetic topological insulator. Chinese Physics Letters, 36(7):076801, 2019.
    [81] Seng Huat Lee, Yanglin Zhu, Yu Wang, Leixin Miao, Timothy Pillsbury, Hemian Yi, Susan Kempinger, Jin Hu, Colin A. Heikes, P. Quarterman, William Ratcliff, Julie A. Borchers, Heda Zhang, Xianglin Ke, David Graf, Nasim Alem, Cui-Zu Chang, Nitin Samarth, and Zhiqiang Mao. Spin scattering and noncollinear spin structure-induced intrinsic anomalous Hall effect in antiferromagnetic topological insulator MnBi2Te4. Phys. Rev. Research, 1:012011, Aug 2019.
    [82] Su-Yang Xu, LA Wray, Y Xia, R Shankar, A Petersen, A Fedorov, H Lin, A Bansil, YS Hor, D Grauer, et al. Discovery of several large families of topological insulator classes with backscattering-suppressed spin-polarized single-Dirac-cone on the surface. arXiv preprint arXiv:1007.5111, 2010.
    [83] Dong Sun Lee, Tae-Hoon Kim, Cheol-Hee Park, Chan-Yeup Chung, Young Soo Lim, Won-Seon Seo, and Hyung-Ho Park. Crystal structure, properties and nanostructuring of a new layered chalcogenide semiconductor Bi2MnTe4. CrystEngComm, 15(27):5532–5538, 2013.
    [84] Toru Hirahara, Sergey V Eremeev, Tetsuroh Shirasawa, Yuma Okuyama, Takayuki Kubo, Ryosuke Nakanishi, Ryota Akiyama, Akari Takayama, Tetsuya Hajiri, Shin-ichiro Ideta, et al. Large-gap magnetic topological heterostructure formed by subsurface incorporation of a ferromagnetic layer. Nano Letters, 17(6):3493–3500, 2017.
    [85] Joseph A Hagmann, Xiang Li, Sugata Chowdhury, Si-Ning Dong, Sergei Rouvimov, Sujitra J Pookpanratana, Kin Man Yu, Tatyana A Orlova, Trudy B Bolin, Carlo U Segre, et al. Molecular beam epitaxy growth and structure of self-assembled Bi2Se3/MnBi2Te4 multilayer heterostructures. New Journal of Physics, 19(8):085002, 2017.
    [86] Emile DL Rienks, Sebastian Wimmer, Jaime S´anchez-Barriga, Ondˇrej Caha, Partha Sarathi Mandal, Jiˇr´ı Rˇziˇcka, Andreas Ney, Hubert Steiner, Valentine V Volobuev, Heiko Groiß, et al. Large magnetic gap at the Dirac point in Bi2Te3/MnBi2Te4 heterostructures. Nature, 576(7787):423–428, 2019.
    [87] Xiangang Wan, Ari M. Turner, Ashvin Vishwanath, and Sergey Y. Savrasov. Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates. Phys. Rev. B, 83:205101, May 2011.
    [88] Gang Xu, Hongming Weng, Zhijun Wang, Xi Dai, and Zhong Fang. Chern Semimetal and the Quantized Anomalous Hall Effect in HgCr2Se4. Phys. Rev. Lett., 107:186806, Oct 2011.
    [89] Pavan Hosur and Xiaoliang Qi. Recent developments in transport phenomena in Weyl semimetals. Comptes Rendus Physique, 14(9-10):857–870, 2013.
    [90] Xiaochun Huang, Lingxiao Zhao, Yujia Long, Peipei Wang, Dong Chen, Zhanhai Yang, Hui Liang, Mianqi Xue, Hongming Weng, Zhong Fang, Xi Dai, and Genfu Chen. Observation of the Chiral-Anomaly-Induced Negative Magnetoresistance in 3D Weyl Semimetal TaAs. Phys. Rev. X, 5:031023, Aug 2015.
    [91] Andrew C Potter, Itamar Kimchi, and Ashvin Vishwanath. Quantum oscillations from surface Fermi arcs in Weyl and Dirac semimetals. Nature Communications, 5(1):1–6, 2014.
    [92] Ching-Kit Chan, Patrick A. Lee, Kenneth S. Burch, Jung Hoon Han, and Ying Ran. When Chiral Photons Meet Chiral Fermions: Photoinduced Anomalous Hall Effects in Weyl Semimetals. Phys. Rev. Lett., 116:026805, Jan 2016.
    [93] Yujun Deng, Yijun Yu, Meng Zhu Shi, Zhongxun Guo, Zihan Xu, Jing Wang, Xian Hui Chen, and Yuanbo Zhang. Quantum anomalous Hall effect in intrinsic magnetic topological insulator MnBi2Te4. Science, 367(6480):895–900, 2020.
    [94] Chang Liu, Yongchao Wang, Hao Li, Yang Wu, Yaoxin Li, Jiaheng Li, Ke He, Yong Xu, Jinsong Zhang, and Yayu Wang. Robust axion insulator and Chern insulator phases in a two-dimensional antiferromagnetic topological insulator. Nature Materials, 19(5):522–527, 2020.
    [95] Jun Ge, Yanzhao Liu, Jiaheng Li, Hao Li, Tianchuang Luo, Yang Wu, Yong Xu, and Jian Wang. High-Chern-number and high-temperature quantum Hall effect without Landau levels. National Science Review, 7(8):1280–1287, 2020.
    [96] Anyuan Gao, Yu-Fei Liu, Chaowei Hu, Jian-Xiang Qiu, Christian Tzschaschel, Barun Ghosh, Sheng-Chin Ho, Damien B´erub´e, Rui Chen, Haipeng Sun, Zhaowei Zhang, Xin-Yue Zhang, Yu-Xuan Wang, Naizhou Wang, Zumeng Huang, Claudia Felser, Amit Agarwal, Thomas Ding, Hung-Ju Tien, Austin Akey, Jules Gardener, Bahadur Singh, Kenji Watanabe, Takashi Taniguchi, Kenneth S. Burch, David C. Bell, Brian B. Zhou, Weibo Gao, Hai-Zhou Lu, Arun Bansil, Hsin Lin, Tay-Rong Chang, Liang Fu, Qiong Ma, Ni Ni, and Su-Yang Xu. Layer Hall effect in a 2D topological axion antiferromagnet. Nature, 595(7868):521–525, 2021.
    [97] Dmitry Ovchinnikov, Xiong Huang, Zhong Lin, Zaiyao Fei, Jiaqi Cai, Tiancheng Song, Minhao He, Qianni Jiang, Chong Wang, Hao Li, et al. Intertwined Topological and Magnetic Orders in Atomically Thin Chern Insulator MnBi2Te4. NanoLetters, 21(6) : 2544 − −2550, 2021.
    [98] Shiqi Yang, Xiaolong Xu, Yaozheng Zhu, Ruirui Niu, Chunqiang Xu, Yuxuan Peng, Xing Cheng, Xionghui Jia, Yuan Huang, Xiaofeng Xu, et al. Odd-even layer-number effect and layer-dependent magnetic phase diagrams in MnBi2Te4. Phys. Rev. X, 11(1):011003, 2021.
    [99] Shangjie Tian, Shunye Gao, Simin Nie, Yuting Qian, Chunsheng Gong, Yang Fu, Hang Li, Wenhui Fan, Peng Zhang, Takesh Kondo, et al. Magnetic topological insulator MnBi6Te10 with a zero-field ferromagnetic state and gapped Dirac surface states. Phys. Rev. B, 102(3):035144, 2020.
    [100] Chaowei Hu, Lei Ding, Kyle N Gordon, Barun Ghosh, Hung-Ju Tien, Haoxiang Li, A Garrison Linn, Shang-Wei Lien, Cheng-Yi Huang, Scott Mackey, et al. Realization of an intrinsic ferromagnetic topological state in MnBi8Te13. Science Advances, 6(30):eaba4275, 2020.
    [101] Jiazhen Wu, Fucai Liu, Can Liu, Yong Wang, Changcun Li, Yangfan Lu, Satoru Matsuishi, and Hideo Hosono. Toward 2D magnets in the (MnBi2Te4) (Bi2Te3)n bulk crystal. Advanced Materials, 32(23):2001815, 2020.
    [102] M. Z. Shi, B. Lei, C. S. Zhu, D. H. Ma, J. H. Cui, Z. L. Sun, J. J. Ying, and X. H. Chen. Magnetic and transport properties in the magnetic topological insulators MnBi2Te4(Bi2Te3)n (n = 1, 2). Phys. Rev. B, 100:155144, Oct 2019.
    [103] Lei Ding, Chaowei Hu, Feng Ye, Erxi Feng, Ni Ni, and Huibo Cao. Crystal and magnetic structures of magnetic topological insulators MnBi2Te4 and MnBi4Te7. Phys. Rev. B, 101:020412, Jan 2020.
    [104] Yong Hu, Lixuan Xu, Mengzhu Shi, Aiyun Luo, Shuting Peng, Z. Y. Wang, J. J. Ying, T. Wu, Z. K. Liu, C. F. Zhang, Y. L. Chen, G. Xu, X.-H. Chen, and J.-F. He. Universal gapless Dirac cone and tunable topological states in (MnBi2Te4)m (Bi2Te3)n heterostructures. Phys. Rev. B, 101:161113, Apr 2020.
    [105] Na Hyun Jo, Lin-Lin Wang, Robert-Jan Slager, Jiaqiang Yan, Yun Wu, Kyungchan Lee, Benjamin Schrunk, Ashvin Vishwanath, and Adam Kaminski. Intrinsic axion insulating behavior in antiferromagnetic MnBi6Te10. Phys. Rev. B, 102:045130, Jul 2020.
    [106] Rui-Xing Zhang, Fengcheng Wu, and S. Das Sarma. M¨obius Insulator and HigherOrder Topology in MnBi2nTe3n+1. Phys. Rev. Lett., 124:136407, Apr 2020.
    [107] J.-Q. Yan, Y. H. Liu, D. S. Parker, Y. Wu, A. A. Aczel, M. Matsuda, M. A. McGuire, and B. C. Sales. A-type antiferromagnetic order in MnBi4Te7 and MnBi6Te10 single crystals. Phys. Rev. Materials, 4:054202, May 2020.
    [108] Chaowei Hu, Kyle N Gordon, Pengfei Liu, Jinyu Liu, Xiaoqing Zhou, Peipei Hao, Dushyant Narayan, Eve Emmanouilidou, Hongyi Sun, Yuntian Liu, et al. A van der Waals antiferromagnetic topological insulator with weak interlayer magnetic coupling. Nature Communications, 11(1):1–8, 2020.
    [109] Mikhail M Otrokov, Dmitry Estyunin, Sergey V Eremeev, Sergey O Filnov, Alexandra Koroleva, Eugene Shevchenko, Vladimir Voroshnin, Artem G Rybkin, Igor P Rusinov, Mar´ıa Blanco Rey, et al. Tunable 3D/2D magnetism in the (MnBi2Te4) (Bi2Te3)m topological insulators family. 2020.
    [110] Raphael C. Vidal, Alexander Zeugner, Jorge I. Facio, Rajyavardhan Ray, M. Hossein Haghighi, Anja U. B. Wolter, Laura T. Corredor Bohorquez, Federico Caglieris, Simon Moser, Tim Figgemeier, Thiago R. F. Peixoto, Hari Babu Vasili, Manuel Valvidares, Sungwon Jung, Cephise Cacho, Alexey Alfonsov, Kavita Mehlawat, Vladislav Kataev, Christian Hess, Manuel Richter, Bernd Bu¨chner, Jeroen van den Brink, Michael Ruck, Friedrich Reinert, Hendrik Bentmann, and Anna Isaeva. Topological Electronic Structure and Intrinsic Magnetization in MnBi4Te7: A Bi2Te3 Derivative with a Periodic Mn Sublattice. Phys. Rev. X, 9:041065, Dec 2019.
    [111] Kyle N Gordon, Hongyi Sun, Chaowei Hu, A Garrison Linn, Haoxiang Li, Yuntian Liu, Pengfei Liu, Scott Mackey, Qihang Liu, Ni Ni, et al. Strongly gapped topological surface states on protected surfaces of antiferromagnetic MnBi4Te7 and MnBi6Te10. arXiv preprint arXiv:1910.13943, 2019.
    [112] Huaiqiang Wang, Dinghui Wang, Zhilong Yang, Minji Shi, Jiawei Ruan, Dingyu Xing, Jing Wang, and Haijun Zhang. Dynamical axion state with hidden pseudospin Chern numbers in mnbi2te4-based heterostructures. Phys. Rev. B, 101:081109, Feb 2020.
    [113] Y Pan, D Wu, JR Angevaare, H Luigjes, E Frantzeskakis, N De Jong, E Van Heumen, TV Bay, B Zwartsenberg, YK Huang, et al. Low carrier concentration crystals of the topological insulator Bi2−xSbxTe3−ySey: a magnetotrans port study. New Journal of Physics, 16(12):123035, 2014.
    [114] J.-Q. Yan, S. Okamoto, M. A. McGuire, A. F. May, R. J. McQueeney, and B. C. Sales. Evolution of structural, magnetic, and transport properties in MnBi2−xSbxTe4. Phys. Rev. B, 100:104409, Sep 2019.
    [115] Xiao-Ming Ma, Yufei Zhao, Ke Zhang, Shiv Kumar, Ruie Lu, Jiayu Li, Qiushi Yao, Jifeng Shao, Fuchen Hou, Xuefeng Wu, Meng Zeng, Yu-Jie Hao, Zhanyang Hao, Yuan Wang, Xiang-Rui Liu, Huiwen Shen, Hongyi Sun, Jiawei Mei, Koji Miyamoto, Taichi Okuda, Masashi Arita, Eike F. Schwier, Kenya Shimada, Ke Deng, Cai Liu, Junhao Lin, Yue Zhao, Chaoyu Chen, Qihang Liu, and Chang Liu. Realization of a tunable surface Dirac gap in Sb-doped MnBi2Te4. Phys. Rev. B, 103:L121112, Mar 2021.
    [116] Paul M Sass, Wenbo Ge, Jiaqiang Yan, D Obeysekera, JJ Yang, and Weida Wu. Magnetic imaging of domain walls in the antiferromagnetic topological insulator MnBi2Te4. Nano Letters, 20(4):2609–2614, 2020.
    [117] Bo Chen, Fucong Fei, Dongqin Zhang, Bo Zhang, Wanling Liu, Shuai Zhang, Pengdong Wang, Boyuan Wei, Yong Zhang, Zewen Zuo, et al. Intrinsic magnetic topological insulator phases in the Sb doped MnBi2Te4 bulks and thin flakes. Nature Communications, 10(1):1–8, 2019.
    [118] Liqin Zhou, Zhiyun Tan, Dayu Yan, Zhong Fang, Youguo Shi, and Hong-ming Weng. Topological phase transition in the layered magnetic compound MnBi2Te4: Spin-orbit coupling and interlayer coupling dependence. Phys. Rev. B, 102:085114, Aug 2020.
    [119] Stefan Wimmer, Jaime S´anchez-Barriga, Philipp Ku¨ppers, Andreas Ney, En rico Schierle, Friedrich Freyse, Ondrej Caha, Jan Michaliˇcka, Marcus Liebmann, Daniel Primetzhofer, Martin Hoffman, Arthur Ernst, Mikhail M. Otrokov, Gustav Bihlmayer, Eugen Weschke, Bella Lake, Evgueni V. Chulkov, Markus Mor genstern, Gu¨nther Bauer, Gunther Springholz, and Oliver Rader. Mn-Rich MnSb2Te4: A Topological Insulator with Magnetic Gap Closing at High Curie Temperatures of 45–50 K. Advanced Materials, page 2102935, 2021.
    [120] Przemyslaw Swatek, Yun Wu, Lin-Lin Wang, Kyungchan Lee, Benjamin Schrunk, Jiaqiang Yan, and Adam Kaminski. Gapless Dirac surface states in the antiferromagnetic topological insulator MnBi2Te4. Phys. Rev. B, 101:161109, Apr 2020.
    [121] D. Nevola, H. X. Li, J.-Q. Yan, R. G. Moore, H.-N. Lee, H. Miao, and P. D. Johnson. Coexistence of Surface Ferromagnetism and a Gapless Topological State in MnBi2Te4. Phys. Rev. Lett., 125:117205, Sep 2020.
    [122] Yu-Jie Hao, Pengfei Liu, Yue Feng, Xiao-Ming Ma, Eike F. Schwier, Masashi Arita, Shiv Kumar, Chaowei Hu, Rui’e Lu, Meng Zeng, Yuan Wang, Zhanyang Hao, Hong-Yi Sun, Ke Zhang, Jiawei Mei, Ni Ni, Liusuo Wu, Kenya Shimada, Chaoyu Chen, Qihang Liu, and Chang Liu. Gapless surface Dirac cone in anti ferromagnetic topological insulator mnbi2te4. Phys. Rev. X, 9:041038, Nov 2019.
    [123] Hang Li, Shun-Ye Gao, Shao-Feng Duan, Yuan-Feng Xu, Ke-Jia Zhu, Shang-Jie Tian, Jia-Cheng Gao, Wen-Hui Fan, Zhi-Cheng Rao, Jie-Rui Huang, Jia-Jun Li, Da-Yu Yan, Zheng-Tai Liu, Wan-Ling Liu, Yao-Bo Huang, Yu-Liang Li, Yi Liu, Guo-Bin Zhang, Peng Zhang, Takeshi Kondo, Shik Shin, He-Chang Lei, You-Guo Shi, Wen-Tao Zhang, Hong-Ming Weng, Tian Qian, and Hong Ding. Dirac Surface States in Intrinsic Magnetic Topological Insulators EuSn2As2 and MnBi2nTe3n+1. Phys. Rev. X, 9:041039, Nov 2019.
    [124] Y. J. Chen, L. X. Xu, J. H. Li, Y. W. Li, H. Y. Wang, C. F. Zhang, H. Li, Y. Wu, A. J. Liang, C. Chen, S. W. Jung, C. Cacho, Y. H. Mao, S. Liu, M. X. Wang, Y. F. Guo, Y. Xu, Z. K. Liu, L. X. Yang, and Y. L. Chen. Topolog ical Electronic Structure and Its Temperature Evolution in Antiferromagnetic Topological Insulator MnBi2Te4. Phys. Rev. X, 9:041040, Nov 2019.
    [125] Seng Huat Lee, Yanglin Zhu, Yu Wang, Leixin Miao, Timothy Pillsbury, Hemian Yi, Susan Kempinger, Jin Hu, Colin A. Heikes, P. Quarterman, William Ratcliff, Julie A. Borchers, Heda Zhang, Xianglin Ke, David Graf, Nasim Alem, Cui-Zu Chang, Nitin Samarth, and Zhiqiang Mao. Spin scattering and noncollinear spin structure-induced intrinsic anomalous Hall effect in antiferromagnetic topological insulator MnBi2Te4. Phys. Rev. Research, 1:012011, Aug 2019.
    [126] Paul M. Sass, Jinwoong Kim, David Vanderbilt, Jiaqiang Yan, and Weida Wu. Robust A-Type Order and Spin-Flop Transition on the Surface of the Antifer romagnetic Topological Insulator MnBi2Te4. Phys. Rev. Lett., 125:037201, Jul 2020.
    [127] Yufei Zhao and Qihang Liu. Routes to realize the axion-insulator phase in MnBi2Te4(Bi2Te3)n family. Applied Physics Letters, 119(6):060502, 2021.
    [128] Adham Hashibon and Christian Els¨asser. First-principles density functional the ory study of native point defects in Bi2Te3. Phys. Rev. B, 84:144117, Oct 2011.
    [129] D. West, Y. Y. Sun, Han Wang, Junhyeok Bang, and S. B. Zhang. Native defects in second-generation topological insulators: Effect of spin-orbit interaction on Bi2Se3. Phys. Rev. B, 86:121201, Sep 2012.
    [130] Lin-Lin Wang, Mianliang Huang, Srinivasa Thimmaiah, Aftab Alam, Sergey L. Bud’ko, Adam Kaminski, Thomas A. Lograsso, Paul Canfield, and Duane D. Johnson. Native defects in tetradymite Bi2TexSe3−x topological insulators. Phys. Rev. B, 87:125303, Mar 2013.
    [131] Jixia Dai, Damien West, Xueyun Wang, Yazhong Wang, Daniel Kwok, S.-W. Cheong, S. B. Zhang, and Weida Wu. Toward the Intrinsic Limit of the Topological Insulator Bi2Se3. Phys. Rev. Lett., 117:106401, Aug 2016.
    [132] Asteriona-Maria Netsou, Dmitry A Muzychenko, Heleen Dausy, Taishi Chen, Fengqi Song, Koen Schouteden, Margriet J Van Bael, and Chris Van Hae-sendonck. Identifying native point defects in the topological insulator Bi2Te3. ACS Nano, 14(10):13172–13179, 2020.
    [133] D. Y. Yan, M. Yang, P. B. Song, Y. T. Song, C. X. Wang, C. J. Yi, and Y. G. Shi. Site mixing induced ferrimagnetism and anomalous transport properties of the Weyl semimetal candidate MnSb2Te4. Phys. Rev. B, 103:224412, Jun 2021.
    [134] Yaohua Liu, Lin-Lin Wang, Qiang Zheng, Zengle Huang, Xiaoping Wang, Miao-Fang Chi, Yan Wu, Bryan C. Chakoumakos, Michael A. McGuire, Brian C. Sales, Weida Wu, and Jiaqiang Yan. Site mixing for engineering magnetic topological insulators. Phys. Rev. X, 11:021033, May 2021.
    [135] Zuowei Liang, Aiyun Luo, Mengzhu Shi, Qiang Zhang, Simin Nie, J. J. Ying, J.-F. He, Tao Wu, Zhijun Wang, Gang Xu, Zhenyu Wang, and X.-H. Chen. Mapping Dirac fermions in the intrinsic antiferromagnetic topological insulators (Mnbi2te4)(Bi2Te3)n (n = 0, 1). Phys. Rev. B, 102:161115, Oct 2020.
    [136] Alexander Zeugner, Frederik Nietschke, Anja UB Wolter, Sebastian Gaß, Raphael C Vidal, Thiago RF Peixoto, Darius Pohl, Christine Damm, Axel Lubk, Richard Hentrich, et al. Chemical aspects of the candidate antiferromagnetic topological insulator MnBi2Te4. Chemistry of Materials, 31(8):2795–2806, 2019.
    [137] You Lai, Liqin Ke, Jiaqiang Yan, Ross D. McDonald, and Robert J. McQueeney. Defect-driven ferrimagnetism and hidden magnetization in MnBi2Te4. Phys. Rev. B, 103:184429, May 2021.
    [138] Mao-Hua Du, Jiaqiang Yan, Valentino R. Cooper, and Markus Eisenbach. Tuning Fermi Levels in Intrinsic Antiferromagnetic Topological Insulators MnBi2Te4 and MnBi4Te7 by Defect Engineering and Chemical Doping. Advanced Functional Materials, 31(3):2006516, 2021.
    [139] Felix Lu¨pke, Anh D Pham, Yi-Fan Zhao, Ling-Jie Zhou, Wenchang Lu, Emil Briggs, Jerzy Bernholc, Marek Kolmer, Wonhee Ko, Cui-Zu Chang, et al. Local manifestations of thickness dependent topology and axion edge state in topological magnet MnBi2Te4. arXiv preprint arXiv:2101.08247, 2021.
    [140] Igor Altfeder, Robert C Walko, Seng Huat Lee, and Zhiqiang Mao. Topological magnetoelectric switching on the atomic scale. arXiv preprint arXiv:2011.07581, 2020.
    [141] Y. S. Hor, P. Roushan, H. Beidenkopf, J. Seo, D. Qu, J. G. Checkelsky, L. A. Wray, D. Hsieh, Y. Xia, S.-Y. Xu, D. Qian, M. Z. Hasan, N. P. Ong, A. Yazdani, and R. J. Cava. Development of ferromagnetism in the doped topological insulator Bi2−xMnxTe4. Phys. Rev. B, 81:195203, May 2010.
    [142] Haim Beidenkopf, Pedram Roushan, Jungpil Seo, Lindsay Gorman, Ilya Drozdov, Yew San Hor, Robert J Cava, and Ali Yazdani. Spatial fluctuations of helical Dirac fermions on the surface of topological insulators. Nature Physics, 7(12):939– 943, 2011.
    [143] Can-Li Song, Ye-Ping Jiang, Yi-Lin Wang, Zhi Li, Lili Wang, Ke He, Xi Chen, Xu-Cun Ma, and Qi-Kun Xue. Gating the charge state of single Fe dopants in the topological insulator Bi2Se3 with a scanning tunneling microscope. Phys. Rev. B, 86:045441, Jul 2012.
    [144] Joon Sue Lee, Anthony Richardella, David W. Rench, Robert D. Fraleigh, Thomas C. Flanagan, Julie A. Borchers, Jing Tao, and Nitin Samarth. Ferromagnetism and spin-dependent transport in n-type Mn-doped bismuth telluride thin films. Phys. Rev. B, 89:174425, May 2014.
    [145] Xuefeng Wu, Jiayu Li, Xiao-Ming Ma, Yu Zhang, Yuntian Liu, Chun-Sheng Zhou, Jifeng Shao, Qiaoming Wang, Yu-Jie Hao, Yue Feng, Eike F. Schwier, Shiv Kumar, Hongyi Sun, Pengfei Liu, Kenya Shimada, Koji Miyamoto, Taichi Okuda, Kedong Wang, Maohai Xie, Chaoyu Chen, Qihang Liu, Chang Liu, and Yue Zhao. Distinct topological surface states on the two terminations of MnBi4Te7. Phys. Rev. X, 10:031013, Jul 2020.
    [146] Peng Cheng, Canli Song, Tong Zhang, Yanyi Zhang, Yilin Wang, Jin-Feng Jia, Jing Wang, Yayu Wang, Bang-Fen Zhu, Xi Chen, Xucun Ma, Ke He, Lili Wang, Xi Dai, Zhong Fang, Xincheng Xie, Xiao-Liang Qi, Chao-Xing Liu, Shou-Cheng Zhang, and Qi-Kun Xue. Landau Quantization of Topological Surface States in Bi2Se3. Phys. Rev. Lett., 105:076801, Aug 2010.
    [147] M Bu¨ttiker, Y Imry, R Landauer, and S Pinhas. Generalized many-channel conductance formula with application to small rings. Phys. Rev. B, 31(10):6207, 1985.
    [148] Supriyo Datta. Electronic transport in mesoscopic systems. Cambridge university press, 1997.
    [149] Yoseph Imry. Physics of mesoscopic systems. In Directions in Condensed Matter Physics: Memorial Volume in Honor of Shang-keng Ma., pages 101–163. World Scientific, 1986.
    [150] DA Wharam, Trevor John Thornton, R Newbury, M Pepper, H Ahmed, JEF Frost, DG Hasko, DC Peacock, DA Ritchie, and GAC Jones. One-dimensional transport and the quantisation of the ballistic resistance. Journal of Physics C: solid state physics, 21(8):L209, 1988.
    [151] Piers Coleman. Introduction to many-body physics. Cambridge University Press, 2015.
    [152] Andrea Damascelli, Zahid Hussain, and Zhi-Xun Shen. Angle-resolved photoemission studies of the cuprate superconductors. Reviews of Modern Physics, 75(2):473, 2003.
    [153] Henrik Bruus and Karsten Flensberg. Many-body quantum theory in condensed matter physics: an introduction. Oxford university press, 2004.
    [154] Peter Abbamonte, Eugene Demler, JC S´eamus Davis, and Juan-Carlos Campuzano. Resonant soft x-ray scattering, stripe order, and the electron spectral function in cuprates. Physica C: Superconductivity, 481:15–22, 2012.
    [155] RS Markiewicz. Bridging k and q space in the cuprates: Comparing angle-resolved photoemission and STM results. Phys. Rev. B, 69(21):214517, 2004.
    [156] U. Chatterjee, M. Shi, A. Kaminski, A. Kanigel, H. M. Fretwell, K. Terashima, T. Takahashi, S. Rosenkranz, Z. Z. Li, H. Raffy, A. Santander-Syro, K. Kadowaki, M. Randeria, M. R. Norman, and J. C. Campuzano. Anomalous dispersion in the autocorrelation of angle-resolved photoemission spectra of high-temperature Bi2Sr2CaCu2O8+δ superconductors. Phys. Rev. B, 76:012504, Jul 2007.
    [157] K. McElroy, R. W. Simmonds, J. E. Hoffman, D.-H. Lee, J. Orenstein, H. Eisaki, S. Uchida, and J. C. Davis. Relating atomic-scale electronic phenomena to wave-like quasiparticle states in superconducting Bi2Sr2CaCu2O8+δ. Nature, 422(6932):592–596, Apr 2003.
    [158] Qiang-Hua Wang and Dung-Hai Lee. Quasiparticle scattering interference in high-temperature superconductors. Phys. Rev. B, 67:020511, Jan 2003.
    [159] Y. Kohsaka, T. Machida, K. Iwaya, M. Kanou, T. Hanaguri, and T. Sasagawa. Spin-orbit scattering visualized in quasiparticle interference. Phys. Rev. B, 95:115307, Mar 2017.
    [160] JE Hoffman, K McElroy, D-H Lee, KM Lang, H Eisaki, S Uchida, and JC Davis. Imaging quasiparticle interference in Bi2Sr2CaCu2O8+δ. Science, 297(5584):1148– 1151, 2002.
    [161] HSIN-YU CHEN. Edge state of monolayer antimonene on Sb2Te3. Master’s thesis, National Cheng Kung University, 7 2018.
    [162] H.H. Chen. The structural property and interaction of bismuth-based low-dimensional structures growth on monolayer epitaxial graphene. Master’s thesis, National Cheng Kung University, 7 2015.
    [163] S. Su. The structural and chemical properties of Co growth on ZnO(10-10) surface. PhD thesis, National Cheng Kung University, 7 2013.
    [164] J.H.Lai. Self-assembled Nanostructures and ZnO Surface Phenomena studied by Scanning Probe Microscopy and Spectroscopy. PhD thesis, National Cheng Kung University, 7 2013.
    [165] Shu Hsuan Su, Pei Yu Chuang, Sheng Wen Chen, Hsin Yu Chen, Yi Tung, Wei-Chuan Chen, Chia-Hsin Wang, Yaw-Wen Yang, Jung Chun Andrew Huang, Tay-Rong Chang, Hsin Lin, Horng-Tay Jeng, Cheng-Maw Cheng, Ku-Ding Tsuei, Hai Lin Su, and Yu Cheng Wu. Selective Hydrogen Etching Leads to 2D Bi(111) Bilayers on Bi2Se3: Large Rashba Splitting in Topological Insulator Heterostructure. Chemistry of Materials, 29(21):8992–9000, 2017.
    [166] 彭鈺瑋. Epitaxial growth and study of single crystal antiferromagnetic topological insulator MnBi2Te4 thin film. Master’s thesis, National Cheng Kung University, 7 2020.
    [167] Ming-Chieh Tsai. Study on the structure and magnetoelectric properties of epitaxial growth antiferromagnetic topological insulator MnBi2Te4. Master’s thesis, National Cheng Kung University, 7 2021.
    [168] P Kagerer, CI Fornari, S Buchberger, SL Morelh˜ao, RC Vidal, A Tcakaev, V Zabolotnyy, E Weschke, V Hinkov, M Kamp, et al. Molecular beam epitaxy of antiferromagnetic (MnBi2Te4)(Bi2Te3) thin films on BaF2 (111). Journal of Applied Physics, 128(13):135303, 2020.
    [169] Qile Li, Chi Xuan Trang, Weikang Wu, Jinwoong Hwang, Nikhil Medhekar, Sung-Kwan Mo, Shengyuan A. Yang, and Mark T Edmonds. Large bandgap quantum anomalous Hall insulator in a designer ferromagnet-topological insulatorferromagnet heterostructure, 2021.
    [170] Chi Xuan Trang, Qile Li, Yuefeng Yin, Jinwoong Hwang, Golrokh Akhgar, Iolanda Di Bernardo, Antonija Grubiˇsi´c-Cˇabo, Anton Tadich, Michael S. Fuhrer, Sung-Kwan Mo, Nikhil V. Medhekar, and Mark T. Edmonds. Crossover from 2D Ferromagnetic Insulator to Wide Band Gap Quantum Anomalous Hall Insulator in Ultrathin MnBi2Te4. ACS Nano, 15(8):13444–13452, 2021. PMID: 34387086.
    [171] Yi-Fan Zhao, Ling-Jie Zhou, Fei Wang, Guang Wang, Tiancheng Song, Dmitry Ovchinnikov, Hemian Yi, Ruobing Mei, Ke Wang, Moses H. W. Chan, Chao-Xing Liu, Xiaodong Xu, and Cui-Zu Chang. Even-odd layer-dependent anomalous Hall effect in topological magnet MnBi2Te4 thin films, 2021.
    [172] Jason Lapano, Lauren Nuckols, Alessandro R. Mazza, Yun-Yi Pai, Jie Zhang, Ben Lawrie, Rob G. Moore, Gyula Eres, Ho Nyung Lee, Mao-Hua Du, T. Zac Ward, Joon Sue Lee, William J. Weber, Yanwen Zhang, and Matthew Brahlek. Adsorption-controlled growth of MnTe(Bi2Te3)n by molecular beam epitaxy exhibiting stoichiometry-controlled magnetism. Phys. Rev. Materials, 4:111201, Nov 2020.
    [173] B. Heying, E. J. Tarsa, C. R. Elsass, P. Fini, S. P. DenBaars, and J. S. Speck. Dislocation mediated surface morphology of gan. Journal of Applied Physics, 85(9):6470–6476, 1999.
    [174] H D Li, Z Y Wang, X Kan, X Guo, H T He, Z Wang, J N Wang, T L Wong, N Wang, and M H Xie. The van der Waals epitaxy of Bi2Se3 on the vicinal Si(111) surface: an approach for preparing high-quality thin films of a topological insulator. New Journal of Physics, 12(10):103038, oct 2010.
    [175] J. Chen, H. J. Qin, F. Yang, J. Liu, T. Guan, F. M. Qu, G. H. Zhang, J. R. Shi, X. C. Xie, C. L. Yang, K. H. Wu, Y. Q. Li, and L. Lu. Gate-Voltage Control of Chemical Potential and Weak Antilocalization in Bi2Se3. Phys. Rev. Lett., 105:176602, Oct 2010.
    [176] Mu Chen, Jun-Ping Peng, Hui-Min Zhang, Li-Li Wang, Ke He, Xu-Cun Ma, and Qi-Kun Xue. Molecular beam epitaxy of bilayer Bi (111) films on topological insulator Bi2Te3: A scanning tunneling microscopy study. Applied Physics Letters, 101(8):081603, 2012.
    [177] CH Li, OMJ van‘t Erve, C Yan, L Li, and BT Jonker. Electrical Detection of Charge-to-spin and Spin-to-Charge Conversion in a Topological Insulator Bi2Te3 Using BN/Al2O3 Hybrid Tunnel Barrier. Scientific Reports, 8(1):1–8, 2018.
    [178] Hubert Steiner, Valentine Volobuev, Ondrej Caha, Gu¨nther Bauer, Gunther Springholz, and V´aclav Holy`. Structure and composition of bismuth telluride topological insulators grown by molecular beam epitaxy. Journal of Applied Crystallography, 47(6):1889–1900, 2014.
    [179] CH Li, OMJ van‘t Erve, YY Li, L Li, and BT Jonker. Electrical detection of the helical spin texture in a p-type topological insulator Sb2Te3. Scientific reports, 6(1):1–7, 2016.
    [180] Marhoun Ferhat, Jean Claude Tedenac, and Jiro Nagao. Mechanisms of spiral growth in Bi2Te3 thin films grown by the hot-wall-epitaxy technique. Journal of Crystal Growth, 218(2):250–258, 2000.
    [181] Jeffrey C. Y. Teo and C. L. Kane. Topological defects and gapless modes in insulators and superconductors. Phys. Rev. B, 82:115120, Sep 2010.
    [182] Ken-Ichiro Imura, Yositake Takane, and Akihiro Tanaka. Weak topological insulator with protected gapless helical states. Phys. Rev. B, 84:035443, Jul 2011.
    [183] Ying Ran, Yi Zhang, and Ashvin Vishwanath. One-dimensional topologically protected modes in topological insulators with lattice dislocations. Nature Physics, 5(4):298–303, 2009.
    [184] M. Hermanowicz and M.W. Radny. Topological electronic states of bismuth selenide thin films upon structural surface defects. Computational Materials Science, 117:76–82, 2016.
    [185] Hsin Lin, Tanmoy Das, Yoshinori Okada, Mike C. Boyer, W. Doug Wise, Michelle Tomasik, Bo Zhen, Eric W. Hudson, Wenwen Zhou, Vidya Madhavan, Chung-Yuan Ren, Hiroshi Ikuta, and Arun Bansil. Topological dangling bonds with large spin splitting and enhanced spin polarization on the surfaces of Bi2Se3. Nano Letters, 13(5):1915–1919, 2013. PMID: 23614400.
    [186] Zhongjie Xu, Xin Guo, Mengyu Yao, Hongtao He, Lin Miao, Lu Jiao, Hongchao Liu, Jiannong Wang, Dong Qian, Jinfeng Jia, Wingkin Ho, and Maohai Xie. Anisotropic topological surface states on high-index Bi2Se3 films. Advanced Materials, 25(11):1557–1562, 2013.
    [187] M. Hermanowicz and M. W. Radny. Topological electronic effects in exfoliated thin films of bismuth telluride. physica status solidi (b), 254(9):1700086, 2017.
    [188] Xie-Gang Zhu and Philip Hofmann. Topological surface states on Bi1−x Sbx: Dependence on surface orientation, termination, and stability. Phys. Rev. B, 89:125402, Mar 2014.
    [189] Xiaoxiong Wang and T.-C. Chiang. Topological states in Bi2 Se3 surfaces created by cleavage within a quintuple layer: Analysis in terms of the Shockley criterion. Phys. Rev. B, 89:125109, Mar 2014.
    [190] Xie-Gang Zhu, Malthe Stensgaard, Lucas Barreto, Wendell Simoes e Silva, Søren Ulstrup, Matteo Michiardi, Marco Bianchi, Maciej Dendzik, and Philip Hofmann. Three Dirac points on the (110) surface of the topological insulator Bi1−xSbx. New Journal of Physics, 15(10):103011, 2013.
    [191] Binghai Yan, Delin Zhang, and Claudia Felser. Topological surface states of Bi2Se3 coexisting with Se vacancies. physica status solidi (RRL) – Rapid Research Letters, 7(1-2):148–150, 2013.
    [192] Guang Wang, Xie-Gang Zhu, Yi-Yang Sun, Yao-Yi Li, Tong Zhang, Jing Wen, Xi Chen, Ke He, Li-Li Wang, Xu-Cun Ma, Jin-Feng Jia, Shengbai B. Zhang, and Qi-Kun Xue. Topological insulator thin films of Bi2Te3 with controlled electronic structure. Advanced Materials, 23(26):2929–2932, 2011.
    [193] Charles Kittel, Paul McEuen, and Paul McEuen. Introduction to solid state physics, volume 8. Wiley New York, 1996.

    下載圖示 校內:2025-09-06公開
    校外:2025-09-06公開
    QR CODE