簡易檢索 / 詳目顯示

研究生: 羅翊瑜
Lo, Yi-Yu
論文名稱: 地震作用下加勁擋土牆動態反應與強度測量之關聯性
A correlation study between the seismic responses of reinforced soil retaining wall and intensity measures
指導教授: 洪瀞
Hung, Ching
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 95
中文關鍵詞: 加勁擋土牆強度測量參數數值分析迴歸分析
外文關鍵詞: Reinforced soil retaining wall, Intensity measures, Numerical analysis, Regression analysis
相關次數: 點閱:73下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在地震災害分析中,強度測量(Intensity Measures, IMs)經常能作為地面運動對結構和地工系統造成損害的潛在指標。近年來,結構物的動態反應與IM之相關研究備受矚目,但有鑒於國內外探討不同IM與加勁擋土牆之相關性的研究較少,因此本研究主要利用機率地震需求模型(Probabilistic Seismic Demand Model, PSDM)嘗試迴歸砌塊式加勁擋土牆(Modular-Block Reinforced Soil Retaining Wall)受震後之反應,並採用已被驗證之有限元素程序模型的分析結果作為模擬值,來探討不同IM與加勁擋土牆之牆面側向位移和最大加勁材軸力的相關性,再建立加勁擋土牆動態反應之預測公式,以供未來作為加勁擋土牆的結構耐震評估之考量。
      依據迴歸分析結果可得知,不論是配適度、實用性、有效性或熟練程度加速度類之IMs皆具有優秀之表現,其中合理性較佳之IM為ASI、PGA和IC,表示加速度類之IM與加勁擋土牆的動態反應相關性較佳。藉由建立ASI、PGA和IC三種IMs之牆面側向位移和最大加勁材軸力多元迴歸函數與原先的簡單回歸函數相比,發現多元迴歸函數的R2較高,表示單一種IM無法完全反映加勁擋土牆之動態反應。因此將此三項IM與模型牆高建立多元迴歸函數,作為加勁擋土牆之牆面側向位移和最大加勁材軸力的預測公式,並利用驗證之地震訊號分析兩個預測公式之誤差率,發現最大加勁材軸力之預測公式誤差率較低代表此公式的可行性較高,可作為未來耐震設計之考量。

    The seismic Intensity Measures (IMs) are often used as potential indicators of structural damage caused by earthquakes in earthquake hazard analysis. In recent years, the correlation between the seismic responses of structures and IM has attracted much attention, but the correlation between IMs and seismic responses of reinforced soil retaining walls is seldom discussed. The objective of this study is to use the Probabilistic Seismic Demand Model (PSDM) to find the best correlation IMs with the seismic responses of modular-block reinforced soil retaining walls. A validated finite element model is utilized to explore the relative lateral facing displacement and maximum reinforcement load of reinforced soil retaining walls.
    According to the regression analysis, it can be seen that the acceleration type of IMs has excellent performance among the others. Results based on ASI, PGA and IC are also reasonable. Furthermore, the multiple regression function renders better R square values, suggesting that single IM may not fully reflect the seismic responses of the reinforced soil retaining walls. Lastly, the study found that the multiple regression function can predict better maximum reinforcement loads, and can be considered useful for future seismic design of reinforced soil retaining walls.

    摘要 I 誌謝 VII 目錄 VIII 表目錄 X 圖目錄 XI 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 1 1.3 研究內容 4 1.4 研究流程 4 第二章 文獻回顧 6 2.1 加勁擋土牆之穩定性 6 2.2 地震對加勁結構之影響 8 2.2.1 現地加勁結構受實際地震作用之影響 9 2.2.2 地震作用下加勁結構室內實驗 13 2.2.3 地震作用下加勁結構數值分析 17 2.3 CESMD地震資料數據庫 19 2.4 強度測量(IM) 20 第三章 研究方法 24 3.1 地震資料收集及選取 24 3.2 數值分析方法 25 3.2.1 PLAXIS 程式介紹 25 3.2.2 PLAXIS 動態分析方法 27 3.2.3 PLAXIS動態分析驗證案例 30 3.3 迴歸分析方法 36 3.3.1 迴歸分析函數模型 36 3.3.2 最小平方法 37 3.3.3 判定係數R2 38 3.3.4 機率地震需求模型(PSDM) 39 第四章 案例分析 42 4.1 地震測站資料 42 4-2 地震強度測量(IM) 48 4.3 PLAXIS數值分析 51 4.3.1 數值模型建立 51 4.3.2 數值模擬結果 54 第五章 迴歸分析 60 5.1 PSDM評估方法 60 5.1.1 牆面側向位移分析 60 5.1.2 最大加勁材軸力分析 70 5.1.3 小結 79 5.2 預測公式之可行性驗證 79 5.2.1 牆面側向位移預測公式驗證 83 5.2.2 最大加勁材軸力預測公式驗證 86 5.2.3 小結 88 第六章 結論與建議 89 6.1 結論 89 6.2 建議 90 參考文獻 91

    Arias, A. (1970). A measure of earthquake intensity, In: Hansen RJ (ed) Seismic design for nuclear power plants. MIT Press, Cambridge, pp. 438–483
    Bathurst, R. J. & Hatami, K. (1998). Seismic Response Analysis of a Geosynthetic-Reinforced Soil Retaining Wall. Geosynthetics International, 5(1-2), pp. 127–166
    Braja, M. D. (2015). Principle of Foundation Engineering. US:Cengage Learning.
    Cornell, C. A.; Jalayer, F.; Hamburger, R. O.; Foutch, D. A. (2002). Probabilistic Basis for 2000 SAC Federal Emergency Management Agency Steel Moment Frame Guidelines. Journal of Structural Engineering, 128(4), pp. 526–533.
    Federal Highway Administration (FHWA). (2001). “Mechanically stabilized earth walls and reinforced soil slopes design and construction guidelines.” FHWA-NHI-00-043, DOT, Washington, DC.
    Giovenale, P.; Cornell, A. C.; Esteva, L. (2004). Comparing the adequacy of alternative ground motion intensity measures for the estimation of structural responses. Earthquake Engineering and Structural Dynamics 2004; 33, pp. 951–979.
    Haddadi, H.; Shakal, A.; Huang, M.; Parrish, J.; Stephens, C.; Savage, W.; Leith, W. (2012). Report on Progress at the Center for Engineering Strong Motion Data (CESMD).
    Helwany, S. M. B.; Reardonb, G.; Wu, T. H. (1999). Effects of backfill on the performance of GRS retaining walls. Geotextiles and Geomembranes , Volume 17, Issue 1, February 1999, pp. 1-16
    Housner, G. W. (1952). Spectrum intensities of strong motion earthquakes. In: Proceedings of the symposium on earthquake and blast effects on structures, EERI, Oakland California, pp. 20–36
    Hu, Jilei & Liu, Huabei (2019). Identification of ground motion intensity measure and its application for predicting soil liquefaction potential based on the Bayesian network method. Engineering Geology Volume 248, 8 January 2019, pp. 34-49
    Huang, T.; Chen, J.; Chang, C. (2002). Finite element computation of soil slopes. Journal of the Chinese Institute of Engineers, 25(6), pp. 663–668.
    Jibson, Randall W. (1993). Predicting earthquake-induced landslide displacements using Newmark's sliding block analysis. Transportation Research Record, 1411 (1993), pp. 9-17
    Koseki, J.; Munaf, Y.; Sato, T.; Tatsuoka, F.; Tateyama, M.; Kojima, K. (1998). Shaking and Tilt Table Tests of Geosynthetic-Reinforced Soil and Conventional-Type Retaining Walls. Geosynthetics International, 5(1-2), pp. 73–96.
    Koseki, J.; Bathurst, R. J.; Güler, E.; Kuwano, J.; Maugeri, M. (2006). Seismic stability of reinforced soil walls.8th International Conference of Geosynthetics
    Krishna, A. Murali & Latha, G. Madhavi (2012). Modeling the Dynamic Response of Wrap-Faced Reinforced Soil Retaining Walls. International Journal of Geomechanics , Volume 12 Issue 4 - August 2012.pp. 439-450
    Liang, Chao; Chen, Jianyun; Xu, Qiang; Li, Jing (2020). Correlation Study between Seismic Intensity Measures and Nonlinear Response of Arch Dam via Endurance Time Analysis. KSCE Journal of Civil Engineering
    Ling, Hoe I.; Leshchinsky, Dov; Chou, Nelson N. S. (2001). Post-earthquake investigation on several geosynthetic-reinforced soil retaining walls and slopes during the Ji-Ji earthquake of Taiwan. Soil Dynamics and Earthquake Engineering , Volume 21, Issue 4, June 2001, pp. 297-313
    Ling, Hoe I.; Mohri, Yoshiyuki; Leshchinsky, Dov; Burke, Christopher; Matsushima, Kenichi; Liu, Huabei (2005). Large-Scale Shaking Table Tests on Modular-Block Reinforced Soil Retaining Walls. Journal of Geotechnical and Geoenvironmental Engineering ,Volume 131 Issue 4 - April 2005
    Liu, Chih-Hsuan & Hung, Ching (2020). Seismic Responses of GRS Walls with Secondary Reinforcements Subjected to Earthquake Loading. Applied Sciences, 2020 ; 10(20).
    Liu, Huabei; Wang, Xiangyu; Song, Erxiang (2011). Reinforcement load and deformation mode of geosynthetic-reinforced soil walls subject to seismic loading during service life. Geotextiles and GeomembranesVolume 29, Issue 1, February 2011, pp. 1-16
    Matsuo, O.; Yokoyama, K.; Saito, Y. (1998). Shaking Table Tests and Analyses of Geosynthetic-Reinforced Soil Retaining Walls. Geosynthetics International , Volume 5 Issue 1-2, January 1998, pp. 97-126
    Mizuhashi, M.; Sugita, H.; Sasaki, T. (2008). Analytical Study on Geotextile-Reinforced Soil Retaining Walls Damaged During the 2004 Mid Niigata Prefecture Japan Earthquake. Geosynthetics in Civil and Environmental Engineering , pp. 318-321
    NCMA. (1997). Design Manual for Segmental Retaining Walls,Second Edition, Second Printing, National Concrete Masonry Association, Herndon, Virginia.
    Nova Roessig, Lili & Sitar, Nicholas (2006). Centrifuge Model Studies of the Seismic Response of Reinforced Soil Slopes. Journal of Geotechnical and Geoenvironmental Engineering ,Volume 132 Issue 3 - March 2006
    Nuttli, O. W. (1979). The relation of sustained maximum ground acceleration and velocity to earthquake intensity and magnitude. US Army Engineer Waterways Experiment Station. Miscellaneous Paper S-76-1, Report 16, pp. 74
    Ozturk, Tahir Erdem (2014). Artificial Neural Networks Approach for Earthquake Deformation Determination of Geosynthetic Reinforced Retaining Walls. International Journal of Intelligent Systems and Applications in Engineering 2014, 2(1), pp. 1–9
    Padgett, J & Des Roches, R. (2007). Sensitivity of response and fragility to parameter uncertainty. Journal of Structural Engineering 2007; 133(12). pp. 1–9.
    28. Padgett, Jamie E.; Nielson, Bryant G.; Des Roches, Reginald (2008). Selection of optimal intensity measures in probabilistic seismic demand models of highway bridge portfolios. Earthquake Engineering and Structural Dynamics. Volume37, Issue5 , 25 April 2008 , pp. 711-725
    Papazafeiropoulos, George & Plevrisb, Vagelis (2018). OpenSeismoMatlab: A new open-source software for strong ground motion data processing. Heliyon .Volume 4, Issue 9, September 2018
    Paulsen, S. B. & Kramer, S. L. (2004). A predictive model for seismic displacement of reinforced slopes. Geosynthetics International, 11(6), pp. 407–428.
    Race, R. & Cid, Del H. (2001). Seismic performance of modular block retaining wall structures during the January 2001 El Salvador earthquake, International Geosynthetics Engineering Forum 2001, Taipei, Taiwan (CD-ROM), pp. 125-144
    Riddell, Rafael & Garcia, Jaime E. (2001). Hysteretic energy spectrum and damage control. Earthquake Engineering & Structural Dynamics Volume 30, Issue 12 , pp. 1791-1816
    Romeo, Roberto (2000). Seismically induced landslide displacements: a predictive model. Engineering Geology Volume 58, Issues 3–4, December 2000, pp. 337-351
    Sandri, Dean (1997). A performance summary of reinforced soil structures in the greater Los Angeles area after the Northridge earthquake. Geotextiles and Geomembranes , Volume 15, Issues 4–6, August–December 1997, pp. 235-253
    Shome, N. (1999). Probabilistic seismic demand analysis of non-linear structures. Ph.D. Thesis, Stanford University, 1999.
    Soysal, Berat Feyza; Binici, Baris; Arici, Yalin (2016). Investigation of the relationship of seismic intensity measures and the accumulation of damage on concrete gravity dams using incremental dynamic analysis. Earthquake Engineering & Structural Dynamics. Earthquake Engng Struct. Dyn. 2016; 45. pp. 719-737
    Srilatha, N.; Latha, G. Madhavi; Puttappa, C. G. (2013). Effect of frequency on seismic response of reinforced soil slopes in shaking table tests. Geotextiles and Geomembranes , Volume 36, February 2013, pp. 27-32
    38. Tatsuoka, F.; Tateyama, M.; Koseki, J. (1996). Performance of soil retaining walls for railway embankments. Soils and Foundations , pp. 311-324
    Varnier, J. B. & Hatami, K. (2011). Seismic response of reinforced soil retaining walls: is PGA-based design adequate? Geo-Risk 2011: Risk Assessment and Management , pp. 336-343
    Viswanadham, B. V. S. & Mahajan, R. R. (2007). Centrifuge model tests on geotextile-reinforced slopes. Geosynthetics International, 14(6), pp. 365–379.
    Von Thun, J. L.; Rochim, L. H.; Scott, G. A.; Wilson, J. A. (1988). Earthquake ground motions for design and analysis of dams. Earthquake engineering and soil dynamics II—recent advances in ground-motion evaluation. Geotechnical Special Publication 20, ASCE, pp. 463–481
    Wang, Liping; Zhang, Ga; Zhang, Jian-Min (2011). Centrifuge model tests of geotextile-reinforced soil embankments during an earthquake. Geotextiles and Geomembranes , Volume 29, Issue 3, June 2011, pp. 222-232
    JSCE. 2006. Report on the 2004 Niigata Chuetsu earthquake,
    Japan Society of Civil Engineers, CD-ROM (in Japanese).
    張毓文、簡文郁(2013)。累積絕對速度(CAV)與地震動參數相關性研究。國家地震工程研究中心研究成果報告,201306 (第101期),第125-128頁
    洪勇善、陳榮河(2005)。坡地社區生態防災工法參考技術手冊暨解說擋土設施及坡面保護工編。內政部建築研究所,第75-105頁

    下載圖示 校內:2023-11-29公開
    校外:2023-11-29公開
    QR CODE