簡易檢索 / 詳目顯示

研究生: 柯智傑
Ko, Chih-Chieh
論文名稱: 隨時空變化之超常材料的不可逆波傳行為探討
The study of nonreciprocal wave propagation in spatio-temporal metamaterial
指導教授: 張怡玲
Chang, I-Ling
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 128
中文關鍵詞: 等效材料性質色散曲線不可逆波傳行為
外文關鍵詞: effective material property, dispersion curve, nonreciprocal wave propagation
相關次數: 點閱:106下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 首先將研究超常材料的等校材料性質,本文以彈簧與質量塊組成的週期系統為基礎,提出單共振模型,藉由結合Liu等人[8]與Oh等人[10]的等效材料性質方法,計算此模型的等效質量與等效彈簧常數,並可得到等效材料性質為與頻率有關的方程式。首先以Oh等人[10]方法將模型等效為單質量彈簧系統,並可得出此模型的色散關係,接著以Liu等人[8]方法計算等效系統的等效材料性質。最後與模型色散曲線對應,等效負材料性質的頻率區間是否皆為色散能隙區間,驗證本文等效材料性質方法的正確性。
    接著提出隨時空變化之超常材料模型,由此模型可以使彈性波具有不可逆波傳行為。不可逆波傳行為代表在空間中兩點以相反方向傳遞的能量將帶有不對稱的波傳資訊。隨時空變化之超常材料色散曲線可由晶格動力學以理論推導,為了改善以理論推導的流程之複雜性,本文提出結合時域有限差分與微擾法的數值方法,快速的計算出此模型的色散曲線,並利用有限差分法模擬此模型的波傳行為,進一步證明彈性波的不可逆波傳行為。

    First, this research discusses dynamically effective properties of metamaterials. A single resonance model, i.e., periodic spring mass system with sub-structure , was proposed.
    Based on the dynamically effective properties method proposed from Liu et al. [8] and Oh et al. [10], the dynamically effective mass and elastic property of the model are derived and found to be frequency dependent. With Oh et al.’s [10] method, the model is equivalent to a single mass spring system, and the dispersion relation of the model could be obtained. Then the dynamically effective material properties of the equivalent system could be calculated by Liu et al.’s [8] method. Corresponding to the model dispersion curve to see whether the band gap always coincides with the frequency range of negative effective properties, the correctness of dynamically effective properties method proposed from this research was verified.
    Second, a spatio-temporal metamaterial model was proposed to demonstrate nonreciprocal wave propagation for elastic wave. Nonreciprocal wave propagation means the transmission of energy in opposite directions between any two points in space will have asymmetric wave propagation information. The dispersion relation of the model could be theoretically calculated using lattice dynamics. In order to improve the complexity of the theoretical derivation processes, a numerical simulation combining finite difference time-domain method and perturbation method was proposed. With numerical perturbation method, the model dispersion curve could be quickly and numerically calculated. The wave propagation behavior inside the model was simulated using finite difference method and the nonreciprocal wave propagation of the elastic waves were further illustrated.

    摘要 II Abstract III 誌謝 XIV 目錄 XV 圖目錄 XVIII 第一章 緒論 1 1.1前言 1 1.2文獻回顧 1 1.3本文架構 6 第二章 基本理論與分析方法 14 2.1簡介 14 2.2固態物理基本理論 15 2.2.1布里淵區(Brillouin zone) 16 2.2.2布洛赫定理(Bloch’s Theorem) 18 2.3晶格動力學 19 2.4有限差分法 22 第三章 超常材料之等效材料性質 28 3.1單質量彈簧系統 28 3.1.1等效材料性質 28 3.2雙質量彈簧系統 31 3.2.1等效材料性質 31 3.3單共振模型 34 3.3.1等效材料性質 34 3.4雙共振模型 37 3.4.1等效材料性質 37 第四章 隨時空變化之超常材料的色散關係及波傳分析 47 4.1隨空間變化之彈簧質量塊模型 47 4.1.1色散關係理論推導 48 4.1.2以數值微擾法計算色散曲線 49 4.1.3有限差分法模擬波傳行為 51 4.2隨時間變化之彈簧質量塊模型 58 4.2.1色散關係理論推導 58 4.2.2以數值微擾法計算色散曲線 63 4.2.3有限差分法模擬波傳行為 64 4.3隨時空變化之彈簧質量塊模型 66 4.3.1色散關係理論推導 67 4.3.2以數值微擾法計算色散曲線 74 4.3.3有限差分法模擬波傳行為 75 第五章 結論與未來展望 125 5.1結論 125 5.2未來展望 126 參考文獻 127

    [1] Z. Liu and P. Sheng, "Locally resonant sonic materials," Science, vol. 289, pp. 1734-1736, 2000. 4, 1968.
    [2] N. Fang, D. Xi, J. Xu, M. Ambati, W. Srituravanich, C. Sun and X. Zhang, "Ultrasonic metamaterials with negative modulus," Nature Materials, vol. 5, pp. 452-456, 2006.
    [3] S. H. Lee, C. M. Park, Y. M. Seo, Z. G. Wang and C. K. Kim, "Acoustic metamaterial with negative modulus," Journal of Physics : Condensed Matter, vol. 21, pp. 175704, 2009.
    [4] H. H. Huang and C. T. Sun, "Wave attenuation mechanism in an acoustic metamaterial with negative effective mass density," New Journal of Physics, vol. 11, pp. 013003, 2009.
    [5] G. L. Huang and C. T. Sun, "Band gaps in a multiresonator acoustic metamaterial," Journal of Vibration and Acoustics, vol. 132, pp. 031003, 2010.
    [6] J. Li and C. T. Chan, "Double-negative acoustic metamaterial," Physical Review Letters, vol. 70, pp. 055602, 2004.
    [7] X. N. Liu, G. K. Hu, G. L. Huang, and C. T. Sun, "An elastic metamaterial with simultaneously negative mass density and bulk modulus," Applied Physics Letters, vol. 98, pp. 251907, 2011.
    [8] X. Liu and G. Hu, "Elastic metamaterials making use of chirality: a review," Journal of Mechanical Engineering, vol. 62, pp. 403-418, 2016.
    [9] X. Wang, "Dynamic behaviour of a metamaterial system with negative mass and modulus," International Journal of Solids and Structures, vol. 51, pp. 1534-1541, 2014.
    [10] J. H. Oh, Y. E. Kwon, H. J. Lee, and Y. Y. Kim, "Elastic metamaterials for independent realization of negativity in density and stiffness," Scientific Reports, vol. 6, pp. 23630, 2016.
    [11] B. Liang, B. Yuan, and J. C. Cheng, "Acoustic diode: rectification of acoustic energy flux in one-dimensional systems," Physical Review Letters, vol. 103, pp. 104301, 2009.
    [12] B. Liang, X. S. Guo, J. Tu, D. Zhang, and J. C. Cheng, "An acoustic rectifier," Nature Materials, vol. 9, pp. 989, 2010.
    [13] G. Trainiti and M. Ruzzene, "Non-reciprocal elastic wave propagation in spatiotemporal periodic structures," New Journal of Physics, vol. 18, pp. 083047, 2016.
    [14] J. Vila, R. K. Pal, M. Ruzzene, and G. Tainiti, "A bloch-based procedure for dispersion analysis of lattices with periodic time-varying properties," Journal of Sound and Vibration, vol. 406, pp. 363-377, 2017.
    [15] H. Nassar, H. Chen, A. N. Norris, M. R. Haberman, and G. L. Huang, "Non-reciprocal wave propagation in modulated elastic metamaterials," The Royal Society:Proceedings A, vol. 473, pp. 20170188, 2017.
    [16] Y. Wang, B. Yousefzadeh, H. Chen, H. Nassar, G. Huang, and C. Daraio, "Observation of nonreciprocal wave propagation in a dynamic phononic lattice," Physical Review Letters, vol. 121, pp. 194301, 2018.
    [17] S. Maruyama, "A molecular dynamics simulation of heat conduction of a finite length single-walled carbon nanotube," Microscale Thermophysical Engineering, vol. 7, pp. 41-50, 2003.
    [18] S. Maruyama, "A molecular dynamics simulation of heat conduction in finite lenth SWNTs," Physica B: Condensed Matter, vol. 323, pp. 193-195, 2002.
    [19] M. J. Huang, C. C. Weng, and T. M. Chang, "An investigation of the phonon properties of silicon nanowires," International Journal of Thermal Sciences, vol. 49, pp. 1095-1102, 2010.
    [20] L. Sandoval, H. M. Urbassek, and P. Entel, "Solid-solid phase transitions and phonon softening in an embedded-atom method model for iron," Physical Review B, vol. 80, pp. 214108, 2009.
    [21] J. A. Thomas, J. E. Turney, R. M. Iutzi, C. H. Amon, and A. J. H. McGaughey, "Predicting phonon dispersion relations and lifetimes from the spectral energy density," Physical Review B, vol. 81, pp. 081411, 2010.
    [22] 張藝齡, "以分子動力學研究奈米材料之聲子性質," 成功大學機械工程學系學位論文, pp. 1-89, 2013.

    下載圖示 校內:2024-08-30公開
    校外:2024-08-30公開
    QR CODE