| 研究生: |
梁正佳 Liang, Cheng-Chia |
|---|---|
| 論文名稱: |
探討液相氧化鎵薄膜之電阻式隨機存取記憶體特性 Research for the Resistive Switching Properties of Liquid Phase Ga2O3 Based Resistive Random Access Memory |
| 指導教授: |
洪茂峰
Houng, Mau-Phon |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 67 |
| 中文關鍵詞: | 氧化鎵 、電阻式隨機存取記憶體 、液相沉積法 、溶膠凝膠法 |
| 外文關鍵詞: | gallium oxide (Ga2O3), resistive random-access memory (RRAM), sol-gel method |
| 相關次數: | 點閱:81 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文的初步研究是利用兩種不同的液態相方法,液相沉積法(Liquid Phase Deposition, LPD)以及溶膠凝膠法(Sol-Gel)去製備寬能隙材料(4.8~4.9 eV)氧化鎵(Ga2O3),並將後者所製備出的氧化鎵(Ga2O3)奈米級薄膜應用於電阻式隨機存取記憶體(Resistive random-access memory, RRAM)做為電阻轉換層,和傳統真空製程相比溶膠凝膠法能使電阻轉換層薄膜有更高的氧空缺(oxygen vacancy concentration)濃度,期望有效提升其電阻式隨機存取記憶體的電阻轉換特性。
最簡單的電阻式記憶體結構為類似三明治層的金屬–絕緣層–金屬(MIM) 結構,本研究利用溶膠凝膠法所製備的氧化鎵作為電阻式記憶體的電阻轉換層,並使用濺鍍的方法製備上電極鋁,下電極則使用氧化銦錫(ITO)玻璃基板,形成記憶體結構Al/Ga2O3/ITO,經由量測後得到的特性為低阻態(Low Resistance State, LRS)和高阻態(High Resistance State, HRS)之電流開關比(on/off ratio)﹥103、記憶保持力(Retention time)﹥1×104 s,直流反覆讀寫能力(DC-Endurance) 100次、變異量的分析Cumulative current/voltage (CVLRS=0.25, CVHRS= 0.78, CVSET = 0.39, CVRESET = 0.16)、元件在低阻態時由歐姆機制所主導,而在高阻態時則是由SCLC機制所主導。
The research of this thesis is to prepare wide energy gap material (4.8~4.9 eV) gallium oxide (Ga2O3) by sol-gel method, and apply it to resistive random-access memory (RRAM) as the resistive switching layer, compared with the traditional vacuum process, the sol-gel method can make the resistive switching layer have higher oxygen vacancy concentration, which is expected to effectively improve the switching memory characteristic.
The simplest resistive random access memory structure is a metal-insulator-metal (MIM) structure similar to a sandwich. In this study, gallium oxide prepared by the sol-gel method was used as the resistive switching layer of the resistive memory, and sputtering was used to prepare the top electrode aluminum, the bottom electrode was using an indium tin oxide (ITO) glass substrate to form a memory structure Al/Ga2O3/ITO, the characteristics obtained after measurement are low resistance state (LRS) and high resistance state (HRS) current on/off ratio > 103, memory retention time > 1×104 s, DC-endurance 100 times, cumulative(coefficient of variation) current/voltage (CVLRS=0.25, CVHRS= 0.78, CVSET = 0.39, CVRESET = 0.16), the device is dominated by the ohmic mechanism in the low resistance state, and dominated by the SCLC mechanism in the high resistance state.
【1】 R. Bez, E. Camerlenghi, A. Modelli and A. Visconti, “Introduction to flash memory,” in Proceedings of the IEEE, vol. 91, no. 4, pp. 489-502, April 2003, doi: 10.1109/JPROC.2003.811702.
【2】 M. Yu, Y. Cai, Z. Wang, Y. Fang, Y. Liu, Z. Yu, Y. Pan, Z. Zhang, J. Tan, X. Yang, M. Li and R. Huang, “Novel vertical 3D structure of TaOx-based RRAM with self-localized switching region by sidewall electrode oxidation.” Scientific Reports, vol. 6, no. 1, 2016, doi:10.1038/srep21020.
【3】 R. Waser, R. Dittmann, G. Staikov, and K. Szot, “Redox-based resistive switching memories –nanoionic mechanisms, prospects, and challenges.” Advanced Materials, vol. 21, no. 25-26, 2009, pp. 2632–2663, doi:10.1002/adma.200900375.
【4】 P. Wong, H. Y. Lee, S. Yu, Y. S. Chen, Y. Wu, P. S. Chen, B. Lee, Frederick T. Chen, and M. Tsai, “Metal–oxide RRAM,” Proceedings of the IEEE, vol. 100, no. 6, pp. 1951-1970, June 2012, doi: 10.1109/JPROC.2012.2190369.Tambo, H., and H. Asahi. "Control of GaN nanorod diameter by changing growth temperature during molecular-beam epitaxy." Journal of Crystal Growth383 (2013): 57-62.
【5】 Y. He, G. Ma , H. Cai, C. Liu, Q. Chen, A. Chen, H. Wang, and T. C. Chang, “Interconversion between bipolar and complementary behavior in nanoscale resistive switching devices,” IEEE Transactions on Electron Devices, vol. 66, no. 1, pp. 619-624, Jan. 2019, doi: 10.1109/TED.2018.2882652.
【6】 M. Higashiwaki, K. Sasaki, H. Murakami, Y. Kumagai, A. Koukitu, A. Kuramata, T. Masui, and S. Yamakoshi, “Recent progress in Ga2O3 power devices”, Semicond. Sci. Technol. 31, 034001(2016)
【7】 R. Roy, V. G. Hill, and E. F. Osborn, “Polymorphism of Ga2O3 and the System Ga2O3—H2O”, J. Am. Chem. Soc., 74(3), 719-722(1952)
【8】 H. Y. Playford, A. C. Hannon, E. R. Barney, and R. I. Walton, “Structures of uncharacterized polymorphs of gallium oxide from total neutron diffraction”, Chem. Eur. J. 19, 2803-2813(2013)
【9】 S.-D. Lee, Y. Ito, K. Kaneko, and S. Fujita, “Enhanced thermal stability of alpha gallium oxide films supported by aluminum doping”, Jpn J Appl Phys 54, 030301(2015)
【10】 K. Sasaki, A. Kuramata, T. Masui, E. G. Vı´llora, K. Shimamura, and S. Yamakoshi, “Device-Quality β-Ga2O3 Epitaxial Films Fabricated by Ozone Molecular Beam Epitaxy”, Appl. Phys. Exp. 5, 035502(2012)
【11】 M. Higashiwaki, K. Sasaki, A. Kuramata, T. Masui, and S. Yamakoshi, “Gallium oxide (Ga2O3) metal-semiconductor field-effect transistors on single-crystal β-Ga2O3 (010) substrates”, Appl. Phys. Lett. 100, 013504(2012)
【12】 https://technews.tw/2021/10/21/ma-tek-ga2o3-4th-semiconductor/
【13】 Z. Guo, A. Verma, X. Wu, F. Sun, A. Hickman, T. Masui, A. Kuramata, M. Higashiwaki, D. Jena, and T. Luo, “Anisotropic thermal conductivity in single crystal β-gallium oxide”, Appl. Phys. Lett. 106, 111909(2015)
【14】 M. Handwerg, R. Mitdank, Z Galazka and S. F. Fischer, “Temperature-dependent thermal conductivity in Mg-doped and undoped β-Ga2O3 bulk-crystals”, Semicond. Sci. Technol. 30, 024006(2015)
【15】 M. D. Santia, N. Tandon, and J. D. Albrecht, “Lattice thermal conductivity in β-Ga2O3 from first principles”, Appl. Phys. Lett. 107, 041907(2015)
【16】 Z. Galazka, K. Irmscher, R. Uecker, R. Bertram, M. Pietsch, A. Kwasniewski, M. Naumann, T. Schulz, R. Schewski, D. Klimm, and M. Bickermann, “On the bulk β-Ga2O3 single crystals grown by the Czochralski method”, J. Cryst. Growth 404, 184-191(2014)
【17】 N. Suzuki, S. Ohira, M. Tanaka, T. Sugawara, K. Nakajima, and T. Shishido, “Fabrication and characterization of transparent conductive Sn‐doped β‐Ga2O3 single crystal”, Phys. Stat. Sol. (c), 4(7), 2310-2313(2007)
【18】 D. W. Choi, K. -B. Chung, and J. -S. Park, “Low temperature Ga2O3 atomic layer deposition using gallium tri-isopropoxide and water”, Thin Solid Films 546, 31-34(2013)
【19】 L. M. Garten, A. Zakutayev, J. D. Perkins, B. P. Gorman, P. F. Ndione, and D. S. Ginley,“Structure property relationships in gallium oxide thin films grown by pulsed laser deposition”, MRS Commun 6, 348-353(2016)
【20】 K. Sasaki, A. Kuramata, T. Masui, E. G. Vı´llora, K. Shimamura, and S. Yamakoshi, “Device-Quality β-Ga2O3 Epitaxial Films Fabricated by Ozone Molecular Beam Epitaxy”, Appl. Phys. Exp. 5, 035502(2012)
【21】 Y. Lv, J. Ma, W. Mi, C. Luan, Z. Zhu, and H. Xiao, “Characterization of β-Ga2O3 thin films on sapphire (0001) using metal-organic chemical vapor deposition technique”, Vacuum, 86(12), 1850-1854(2012)
【22】 M. Fleischer, W. Hanrieder, and H. Meixner, “Stability of semiconducting gallium oxide thin films”, Thin Solid Films 190, 93-102(1990)
【23】 M. F. Al-Kuhaili, S. M. A. Durrani, and E. E. Khawaja, “Optical properties of gallium oxide films deposited by electron-beam evaporation”, Appl. Phys. Lett. 83, 4533(2003)
【24】 R. Waser, R. Dittmann, G. Staikov, and K. Szot, “Redox-based resistive switching memories –nanoionic mechanisms, prospects, and challenges.” Advanced Materials, vol. 21, no. 25-26, 2009, pp. 2632–2663, doi:10.1002/adma.200900375
【25】 P. Wong, H. Y. Lee, S. Yu, Y. S. Chen, Y. Wu, P. S. Chen, B. Lee, Frederick T. Chen, and M. Tsai, “Metal–oxide RRAM,” Proceedings of the IEEE, vol. 100, no. 6, pp. 1951-1970, June 2012, doi: 10.1109/JPROC.2012.2190369.
【26】 J. Joshua Yang, D. B. Strukov and D. R. Stewart, “Memristive devices for computing,” Nature Nanotech 8, pp. 13–24, 2013, doi: 10.1038
【27】 R. Waser, “Resistive non-volatile memory devices (Invited Paper),” Microelectronic Engineering, vol. 86, no. 7-9, pp. 1925-1928, Mar. 2009, doi: 10.1016/j.mee.2009.03.132.
【28】 Yoon, J. H.; Yoo, S.; Song, S. J.; Yoon, K. J.; Kwon, D. E.; Kwon, Y. J.; Park, T. H.; Kim, H. J.; Shao, X. L.; Kim, Y.; Hwang, C. S. Uniform Self-rectifying Resistive Switching Behavior via Preformed Conducting Paths in a Vertical-type Ta2O5/HfO2 x Structure with a Sub-μm2 Cell Area. ACS Appl. Mater. Interfaces 2016, 8, 18215− 18221.
【29】 Wang, B.; Xue, K. H.; Sun, H. J.; Li, Z. N.; Wu, W.; Yan, P.; Liu, N.; Tian, B. Y.; Liu, X. X.; Miao, X. S. Performance Enhancement of TaOx Resistive Switching Memory using Graded Oxygen Content. Appl. Phys. Lett. 2018, 113, 183501.
【30】 Wang, Y. C.; Yan, Y.; Wang, C.; Chen, Y. T.; Li, J. Y.; Zhao, J. S.; Hwang, C. S. Controlling the Thin Interfacial Buffer Layer for Improving the Reliability of the Ta/Ta2O5/Pt Resistive Switching Memory. Appl. Phys. Lett. 2018, 113, 072902
【31】 Hua, Q. L.; Wu, H. Q.; Gao, B.; Qian, H. Enhanced Performance of Ag-filament Threshold Switching Selector by Rapid Thermal Processing. Int. Symp. VLSI Technol. 2018, 1−2
【32】 Sharath, S. U.; Vogel, S.; Molina-Luna, L.; Hildebrandt, E.; Wenger, C.; Kurian, J.; Duerrschnabel, M.; Niermann, T.; Niu, G.; Calka, P.; Lehmann, M.; Kleebe, H. J.; Schroeder, T.; Alff, L. Control of Switching Modes and Conductance Quantization in Oxygen Engineered HfOx based Memristive Devices. Adv. Funct. Mater. 2017, 27, 1700432.
【33】 Lu, K.; Li, Y.; He, W. F.; Chen, J.; Zhou, Y. X.; Duan, N.; Jin, M. M.; Gu, W.; Xue, K. H.; Sun, H. J.; Miao, X. S. Diverse Spike-Timing-Dependent Plasticity Based on Multilevel HfOx Memristor for Neuromorphic Computing. Appl. Phys. A: Mater. Sci. Process. 2018, 124, 438
【34】 P. Wu, H.X. Zheng, C.C. Shih, T.C. Chang, W.J. Chen, C.C. Yang, W.C. Chen, M.C. Tai, Y.F. Tan, H.C. Huang, X.H. Ma , Y. Hao, T.M. Tsai, and S.M. Sze, “Improvement of resistive switching characteristics in zinc oxide-based resistive random access memory by ammoniation annealing,” IEEE Electron Device Letters, vol. 41, no. 3, pp. 357-360, March 2020, doi: 10.1109/LED.2020.2968629.
【35】 Park, J. H.; Jeon, D. S.; Kim, T. G. Ti-Doped GaOx Resistive Switching Memory with Self-Rectifying Behavior by Using NbOx/Pt Bilayers. ACS Appl. Mater. Interfaces 2017, 9, 43336−43342.
【36】 Huang, J. J.; Chang, T. C.; Yang, J. B.; Chen, S. C.; Yang, P. C.; Chen, Y. T.; Tseng, H. C.; Sze, S. M.; Chu, A. K.; Tsai, M. J. Influence of Oxygen Concentration on Resistance Switching Characteristics of Gallium Oxide. IEEE Electron Device Lett. 2012, 33, 1387−1389.
【37】 Aoki, Y.; Wiemann, C.; Feyer, V.; Kim, H. S.; Schneider, C. M.; Ill-Yoo, H.; Martin, M. Bulk Mixed Ion Electron Conduction in Amorphous Gallium Oxide Causes Memristive Behaviour. Nat. Commun. 2014, 5, 3473.
【38】 X. Li, J.G. Yang, H.P. Ma, Y.H. Liu, Z.G. Ji, W. Huang, X. Ou, D.W. Zhang, and H.L. Lu, ”Atomic Layer Deposition of Ga2O3/ZnO composite films for high-performance forming-free resistive switching memory ”,ACS Appl. Mater. Interaces 2020, 12, 30538-30547
【39】 Park, J. H.; Jeon, D. S.; Kim, T. G. Ti-Doped GaOx Resistive Switching Memory with Self-Rectifying Behavior by Using NbOx/Pt Bilayers. ACS Appl. Mater. Interfaces 2017, 9, 43336−43342.
【40】 Fang, Z.; Yu, H. Y.; Li, X.; Singh, N.; Lo, G. Q.; Kwong, D. L. HfOx/TiOx/HfOx/TiOx Multilayer-Based Forming-Free RRAM Devices With Excellent Uniformity. IEEE Electron Device Lett. 2011, 32, 566−568.
【41】 Chakrabarti, B.; Galatage, R. V.; Vogel, E. M. Multilevel Switching in Forming-Free Resistive Memory Devices With Atomic Layer Deposited HfTiOx Nanolaminate. IEEE Electron Device Lett. 2013, 34, 867−869.
【42】 J. Wu, “Functional metal oxide nanostructures,” Springer, 2012.
【43】 H. Y. Lee, P. S. Chen, T. Y. Wu, Y. S. Chen, C. C. Wang, P. J. Tzeng, C. H. Lin, F. Chen, C. H. Lien, and M. J. Tsai, “Low power and high speed bipolar switching with a thin reactive Ti buffer layer in robust HfO2 based RRAM,” 2008 IEEE International Electron Devices Meeting, pp. 1-4, 2008, doi: 10.1109/IEDM.2008.4796677.
【44】 R. Waser and M. Aono, “Nanoionics-based resistive switching memories,” Nature Materials, vol. 6, no. 11, pp. 833–840, 2007. doi: 10.1038/nmat2023
【45】 A. Prakash and H. Hwang, “Multilevel cell storage and resistance variability in resistive random access memory,” Physical Sciences Reviews, vol. 1, no. 6, 2016, doi: 10.1515/psr-2016-0010
【46】 A. Sawa, “Resistive switching in transition metal oxides,” Materials Today, vol. 11, no. 6, pp. 28–36, 2008. doi: 10.1016/S1369-7021(08)70119-6.
【47】 L. Zhu, J. Zhou, Z. Guo, and Z. Sun, “An overview of materials issues in resistive random access memory,” Journal of Materiomics, vol. 1, no. 4, pp. 285–295, 2015. doi: 10.1016/j.jmat.2015.07.009.
【48】 “http://www.tn.ifn.cnr.it/facilities/sol-gel-room/sol-gel-principles”
【49】 “Electrical characteristics and analyses of HfOx based resistive random access memories”
【50】 林麗君,“X 光繞射原理及其應用”,X光材料分析技術與應用專題,1994年。
【51】 Y. Hu, “Two-dimensional (2D) functional molecular networks,” Diss. University College London, 2016.
【52】 Y. OHYA, J. OKANO, Y. KASUYA, T. BAN, “Fabrication of Ga2O3 thin films by aqueous solution deposition” Journal of the Ceramic Society of Japan 117[9] 973-977 2009