簡易檢索 / 詳目顯示

研究生: 陳瑞柏
Chen,Jui-Po
論文名稱: 鋰電池中鈦酸鋰負極材料之活化過程與應用
Formation process and its application of lithium titanate anode material in lithium batteries
指導教授: 林士剛
Lin,Shih-kang
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 53
中文關鍵詞: 鋰鈦氧化物產氣低電位鈍化膜
外文關鍵詞: Gassing, SEI, low voltage, lithium-ion batteries, pouch cell
相關次數: 點閱:66下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目錄 第一章 緒論……………………..….……..……………………………..…..1 1-1 研究動機………..……….……………………………………..……...1 1-2 研究目標………………..……………….……………………..……...2 第二章 文獻回顧………………..………………………….…..……............3 2-1 鋰電池原理、應用與構造…………………………..….….…..…......3 2-2 鋰電池電極材料分類…………………………………..…..……..…..5 2-3 鈦酸鋰產氣機制和抑制方法…………………………......…..…...….9 2-4 鈦酸鋰負極材料成長SEI膜 ......………………………........………12 第三章 實驗方法…………………………………………..…….…………16 3-1 實驗藥品與耗材…………………………...…….………....…….....16 3-2 實驗儀器設備………………………………………….….….……..17 3-3 實驗流程架構圖…..………………….……..………..………….….18 3-4 材料物理性質鑑定與分析…………………………………..….…..19 3-5 電池製作與電性測試…………………………………………..…...20 3-5-1 負極板製備……………………………………………….…......20 3-5-2 負極板附著性與表面阻抗量測…………………….………......20 3-5-3 鈕扣型電池組裝……………………………...…….……….......20 3-5-4 鋁箔袋電池組裝…………………………………………….......20 3-5-5 電池充放電活化測試………………………...….……………...21 3-6 鈦酸鋰電池電化學分析………………….….…………….………...21 3-6-1 循環伏安(CV)測試………………………………….…………..21 3-6-2 交流阻抗(AC impedance)測試...……………………………....21 3-7 鈦酸鋰電池SEI膜鑑定與脹氣分析……..…………..…….…..........24 3-7-1 ex-situ AFM分析…………………..….…………….…………24 3-7-2 氣相層析質譜儀分析(GC-MS)…………..…….……………....25 3-7-3 鋁箔袋電池脹氣分析…….………………………....…………..26 第四章 結果與討論….……………………….…………………….………27 4-1 LTO負極材料料物理性質……………...…………………………..27 4-1-1 鈦酸鋰材料晶體結構…………...……………….……………...27 4-1-2 鈦酸鋰材料表面形貌…………………………………………...28 4-1-3 鈦酸鋰材料粉體粒徑與表面積………………………………...29 4-2 鈦酸鋰負極活化過程……………………….……………….………30 4-2-1 不同C-rate充放電條件………….……………………..……….30 4-2-2 CC(定電流)在低電位下不同圈數活化過程比較………….…..31 4-2-3 CV(定電壓)在低電位下不同圈數活化過程比較…………...…33 4-2-4 活化SEI後回到工作電位150cycle的循環壽命…………...…...34 4-3 低電位下化成後SEI電化學阻抗分析……………..…….…..……...36 4-3-1 低電位下進行化成SEI後的交流阻抗測試………………….....36 4-3-2 活化SEI後的鈦酸鋰電池循環壽命測試………………….……38 4-4 鈦酸鋰負極材料SEI膜鑑定………………….………….……….....39 4-4-1 ex-situ AFM 表面線性分佈分析………………………….........39 4-4-2 ex-situ AFM晶粒表面形貌分析……………………….…..…...41 4-5 鈦酸鋰負極SEI膜與電池脹氣關聯………………………..….…....43 4-5-1 鈦酸鋰電池氣體分析………………...………....………………43 4-5-2 SEI膜對鈦酸鋰電池脹氣影響……….……….………….…......44 第五章 結論…………………………………….…………………………..49 第六章 參考文獻……………………..……………….……………………51

    1. P.P. Edwards, R.G. Egdell, I. Fragala, J.B. Goodenough, M.R. Harrison, A.F. Orchard, E.G. Scott, Journal of Solid-State Chemistry, 54 127 (1984).
    2. T.F. Yi, Y. Xie, J. Shu, Z. Wang, C.B. Yue, R.S. Zhu, H.B. Qiao, Journal of The Electrochemical Society, 158 A266-A274(2011).
    3. K.C. Hsiao, S.C. Liao, J.M. Chen, Electrochemical Acta, 53 (2008) 7242-7247.
    4. Goodenough, J. B., & Kim, Y. Challenges for Rechargeable Li Batteries. Chemistry of Materials, 22(3), 587–603 (2010).
    5. Electrolyte-Additive-Driven Interfacial Engineering for High-Capacity Electrodes in Lithium-Ion Batteries: Promise and ChallengesKoeun Kim, Hyunsoo Ma, Sewon Park, and Nam-Soon ChoiACS Energy Letters5(2020).
    6. Wang, S., Yang, K., Gao, F., Wang, D., & Shen, C.Direct visualization of solid electrolyte interphase on Li4Ti5O12 by: In situ AFM. RSC Advances, 6(81), 77105–77110 (2016).
    7. Benjamin P. Williams, Haochuan Zhang, Yu Mu, James R. Wilkes, Haden Wikar, and Dunwei WangThe Journal of Physical Chemistry C (26) (2022) 126 .
    8. He, M., Castel, E., Laumann, A., Nuspl, G., Novák, P., & Berg, E.J. In Situ Gas Analysis of Li4Ti5O12 Based Electrodes at Elevated Temperatures. Journal of The Electrochemical Society, 162(2015)..
    9. Yoon JK, Nam S, Shim HC, Park K, Yoon T, Park HS, Hyun S. Highly Stable Li₄Ti₅O12 Anodes Obtained by Atomic-Layer-Deposited Al₂O₃. Materials (2016).
    10. Govindarajan, K., Nasara, R. N., & Lin, S. Clarification on the Gassing Behavior of Carbon-Coated Li4Ti5O12 at Elevated Temperature: Importance of Coating Coverage. Batteries & Supercaps, 5(6), e202200010 (2022).
    11. RebeccaBernhard, StefanoMein On-Line Electrochemical Mass Spectrometry Investigations on the Gassing Behavior of Li4Ti5O12 Electrodes and Its Origins.
    12. M.-S. Song, R.-H. Kim, S.-W. Baek, K.-S. Lee, K. Park, and A. Benayad, Journal of Materials Chemistry A, 2, 631 (2014).
    13. R. Bernhard, S.Meini,andH.A.Gasteiger,J.Electrochem.Soc.,161,A497(2014).
    14. G. g. Gachot, P. Ribie ́re, D. Mathiron, S. Grugeon, M. Armand, J.-B. Leriche, S. Pilard, and S. p. Laruelle, Anal. Chem., 83, 478 (2010).
    15. Xu, K. Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries. Chemical Reviews, 104(10), 4303–4418. (2004).
    16. He YB, Li B, Liu M, Zhang C, Lv W, Yang C, Li J, Du H, Zhang B, Yang QH, Kim JK, Kang F. Gassing in Li(4)Ti(5)O(12)-based batteries and its remedy.
    17. Lv, W., Gu, J., Niu, Y., Wen, K. & He, W. Review-gassing mechanism and suppressing solutions in Li4Ti5O12-based lithium-ion batteries. J. Electrochem. Soc. 164, A2213–A2224 (2017).
    18. Wu, K. et al. Study of spinel Li4Ti5O12electrode reaction mechanism byelectrochemical impedance spectroscopy. Electrochim. Acta 108, 841–851 (2013).
    19. T.F. Yi, B. Chen, H.Y. Shen, R.S. Zhu, A.N. Zhou, H.B. Qiao, J. Alloys Compd. 558 (2013) 11.
    20. Pol, S. V, Pol, V. G., & Gedanken, Reactions under Autogenic Pressure at Elevated Temperature (RAPET) of Various Alkoxides: Formation of Metals/Metal Oxides-Carbon Core-Shell Structures. Chemistry – A European Journal, 10(18), 4467–4473(2004).
    21. T.F. Yi, H.P. Liu, Y.R. Zhu, L.J. Jiang, Y. Xie, R.S. Zhu, Research Progress in Improving the Cycling Stability of High-Voltage LiNi0.5Mn1.5O4 Cathode in Lithium-Ion BatteryJ. Power Sources 215 (2012) 258.
    22. Yi, T.-F., Xie, Y., Jiang, L.-J., Shu, J., Yue, C.-B., Zhou, A.-N., & Ye, M.-F Advanced electrochemical properties of Mo-doped Li4Ti5O12 anode material for power lithium-ion battery. RSC Advances, 2(8), 3541–3547 (2012).
    23. Y.J. Bai, C. Gong, Y.X. Qi, N. Lun, J. Feng, J. Mater. Chem. 22(2012) 19054.
    24. T.F. Yi, J. Shu, Y.R. Zhu, X.D. Zhu, R.S. Zhu, A.N. Zhou, J. Power Sources 195 (2010) 285.
    25. B.B. Tia, H.F. Xiang, L. Zhang, H.H. Wang, J Solid State Electrochemical interface. 16 (2012) 205.
    26. Galushkin, N. Е., Yazvinskaya, N. N., & Galushkin, D. N. Mechanism of Gases Generation during Lithium-Ion Batteries Cycling. Journal of The Electrochemical Society, 166(6), A897–A908 (2019).
    27. Y.-B. He, M. Liu, Z.-D. Huang, B. Zhang, Y. Yu, B. Li, F. Kang, and J.-K. Kim, J. Power Sources, 239, 269 (2013).
    28. M.-S. Song, R.-H. Kim, S.-W. Baek, K.-S. Lee, K. Park, and A. Benayad, Journal of Materials Chemistry A, 2, 631 (2014).
    29. R.N. Nasara, W. Ma, Y. Kondo, K. Miyazaki, Y. Miyahara, T. Fukutsuka, S. K. Lin, T. Charge‐Transfer Kinetics of The Solid‐Electrolyte Interphase on Li4Ti5O12 Thin‐Film Electrodes Abe, ChexSystems, 13 (2020) 4041.
    30. Wang, S., Yang, K., Gao, F., Wang, D., & Shen, C. Direct visualization of solid electrolyte interphase on Li4Ti5O12 by: In situ AFM. RSC Advances (2016).

    無法下載圖示 校內:2027-08-30公開
    校外:2027-08-30公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE