| 研究生: |
黃敬茹 Huang, Ching-Ju |
|---|---|
| 論文名稱: |
鐵三價甲氧基硫磷配位錯合物與二氯甲烷的反應性探討 Activation of Dichloromethane by an Iron(III) Methoxide Complex Binding with a Tris(thiolato)phosphine Ligand |
| 指導教授: |
許鏵芬
Hsu, Hua-Fen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 英文 |
| 論文頁數: | 62 |
| 中文關鍵詞: | 甲氧基 、鐵硫錯合物 、二氯甲烷的活化 |
| 外文關鍵詞: | methoxide, iron thiolate complex, activation of dichloromethane |
| 相關次數: | 點閱:128 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在許多金屬蛋白的活性位置存在以硫為配位的鐵金屬中心。為了更了解鐵硫錯合物的配位化學,我們著重於鐵金屬與多芽配位基PS3”反應的研究(PS3” = [P(C6H3-3-Me3Si-2-S)3]3-)。於是我們在甲醇溶液中以鐵二價物質與氧氣反應而得到鐵三價甲氧基錯合物[FeIII(PS3”)OCH3][PPh4] (1)。此外我們還發現錯合物1和二氯甲烷反應可以得到[FeIII(PS3”)Cl][PPh4] (2)。由紫外光-可見光-進紅外光光譜、電噴灑游離質譜以及核磁共振光譜監測其反應性。錯合物2的形成證明錯合物1與二氯甲烷C-Cl鍵的活化。錯合物1和2經由X-光單晶繞射儀以及其他的物理方法,如紫外光-可見光-進紅外光光譜、電噴灑游離質譜、核磁共振光譜以及超導量子干涉震動磁量儀進行分析與鑑定。兩個錯合物的結構皆有一個四芽配位基PS3”和一個位於軸位與磷反式的輔助配位基,其幾何結構皆為雙三角錐。磁性研究顯示兩種錯合物都具有S = 3/2的自旋態,在雙三角錐幾何結構中屬於d5中間自旋態。
The iron centers ligated by S-donors are present in the actives sites of many metalloproteins. In order to understand basic coordination chemistry of iron sulfur complexes, we focus on the chemistry of iron species reacting with multidentate thiolato ligand, PS3” (PS3” = [P(C6H3-3-Me3Si-2-S)3]3-). As a result, an iron(III) methoxide complex, [FeIII(PS3”)OCH3][PPh4] (1), was obtained by the reaction of iron(II) species with dioxygen in methanol. Furthermore, complex 1 was found to react with dichloromethane, giving [FeIII(PS3”)Cl][PPh4] (2). The reactivity was monitored by UV-vis-NIR spectrum, ESI-MS spectrum and NMR spectrum. The formation of complex 2 demonstrates that C-Cl bond in dichloromethane was activated by complex 1. Complexes 1 and 2 were all well characterized by X-ray crystallography, as well as other physical methods such as UV-vis-NIR spectrum, ESI-MS spectrum, NMR spectrum and SQUID. The structures of both complexes adopt a trigonal bipyramidal geometry by binding to a tetradentate PS3” ligand and an axial co-ligand trans to the phosphine donor. The magnetic studies indicate that both complexes have S=3/2 spin states, consistent with d5 intermediate spin in trigonal bipyramidal geometry.
1 Chen, K., Costas, M., Kim, J., Tipton, A. K. & Que, L. Olefin Cis-Dihydroxylation versus Epoxidation by Non-Heme Iron Catalysts: Two Faces of an FeIII−OOH Coin. Journal of the American Chemical Society 124, 3026-3035 (2002).
2 Costas, M., Mehn, M. P., Jensen, M. P. & Que, L. Dioxygen Activation at Mononuclear Nonheme Iron Active Sites: Enzymes, Models, and Intermediates. Chemical Reviews 104, 939-986 (2004).
3 Aliaga-Alcalde, N. et al. The Geometric and Electronic Structure of [(cyclam-acetato)Fe(N)]+: A Genuine Iron(V) Species with a Ground-State SpinS=1/2. Angewandte Chemie 117, 2968-2972 (2005).
4 Yin, G. Active transition metal oxo and hydroxo moieties in nature's redox, enzymes and their synthetic models: Structure and reactivity relationships. Coordination Chemistry Reviews 254, 1826-1842 (2010).
5 Goldsmith, C. R., Jonas, R. T. & Stack, T. D. P. C−H Bond Activation by a Ferric Methoxide Complex: Modeling the Rate-Determining Step in the Mechanism of Lipoxygenase. Journal of the American Chemical Society 124, 83-96 (2001).
6 Neidig, M. L., Wecksler, A. T., Schenk, G., Holman, T. R. & Solomon, E. I. Kinetic and Spectroscopic Studies of N694C Lipoxygenase: A Probe of the Substrate Activation Mechanism of a Nonheme Ferric Enzyme. Journal of the American Chemical Society 129, 7531-7537 (2007).
7 Ogo, S. et al. Structural and spectroscopic features of a cis (hydroxo)-Fe(III)-(carboxylato) configuration as an active site model for lipoxygenases. Inorg Chem 41, 5513-5520 (2002).
8 Choi, J., Chon, J. K., Kim, S. & Shin, W. Conformational flexibility in mammalian 15S-lipoxygenase: Reinterpretation of the crystallographic data. Proteins 70, 1023-1032 (2008).
9 Vahedi-Faridi, A. et al. Interaction between Non-Heme Iron of Lipoxygenases and Cumene Hydroperoxide: Basis for Enzyme Activation, Inactivation, and Inhibition. Journal of the American Chemical Society 126, 2006-2015 (2004).
10 Pau, M. Y. M., Lipscomb, J. D. & Solomon, E. I. Substrate activation for O2 reactions by oxidized metal centers in biology. Proceedings of the National Academy of Sciences 104, 18355-18362 (2007).
11 Brennan, B. A., Cummings, J. G., Chase, D. B., Turner, I. M. & Nelson, M. J. Resonance Raman Spectroscopy of Nitrile Hydratase, a Novel Iron−Sulfur Enzyme†. Biochemistry 35, 10068-10077 (1996).
12 Noguchi, T., Nojiri, M., Takei, K.-i., Odaka, M. & Kamiya, N. Protonation Structures of Cys-Sulfinic and Cys-Sulfenic Acids in the Photosensitive Nitrile Hydratase Revealed by Fourier Transform Infrared Spectroscopy†. Biochemistry 42, 11642-11650 (2003).
13 Ellison, J. J. et al. Reactivity of Five-Coordinate Models for the Thiolate-Ligated Fe Site of Nitrile Hydratase. Journal of the American Chemical Society 120, 5691-5700 (1998).
14 Kovacs, J. A. Synthetic Analogues of Cysteinate-Ligated Non-Heme Iron and Non-Corrinoid Cobalt Enzymes. Chemical Reviews 104, 825-848 (2004).
15 Lugo-Mas, P. et al. Properties of Square-Pyramidal Alkyl−Thiolate FeIII Complexes, Including an Analogue of the Unmodified Form of Nitrile Hydratase. Inorganic Chemistry 47, 11228-11236 (2008).
16 O’Toole, M. G., Bennett, B., Mashuta, M. S. & Grapperhaus, C. A. Substrate Binding Preferences and pKa Determinations of a Nitrile Hydratase Model Complex: Variable Solvent Coordination to [(bmmp-TASN)Fe]OTf. Inorganic Chemistry 48, 2300-2308 (2009).
17 Yeh, A. P., Hu, Y., Jenney, F. E., Adams, M. W. W. & Rees, D. C. Structures of the Superoxide Reductase from Pyrococcus furiosus in the Oxidized and Reduced States†,‡. Biochemistry 39, 2499-2508 (2000).
18 Kurtz, D. M. Microbial Detoxification of Superoxide: The Non-Heme Iron Reductive Paradigm for Combating Oxidative Stress. Accounts of Chemical Research 37, 902-908 (2004).
19 Kovacs, J. A. & Brines, L. M. Understanding How the Thiolate Sulfur Contributes to the Function of the Non-Heme Iron Enzyme Superoxide Reductase. Accounts of Chemical Research 40, 501-509 (2007).
20 Mandal, S. K. & Que, L. Models for Amide Ligation in Nonheme Iron Enzymes. Inorganic Chemistry 36, 5424-5425 (1997).
21 Mei, F. et al. Non-heme iron(II/III) complexes that model the reactivity of lipoxygenase with a redox switch. Dalton transactions 39, 4267-4269 (2010).
22 Beissel, T. et al. (1,4,7-Tris(4-tert-butyl-2-mercaptobenzyl)-1,4,7 -triazacyclononane)iron(III): a model for the iron-sulfur center in nitrile hydratase from Brevibacterium, sp. Inorganic Chemistry 32, 124-126 (1993).
23 Jackson, H. L. et al. Probing the Influence of Local Coordination Environment on the Properties of Fe-Type Nitrile Hydratase Model Complexes. Inorganic Chemistry 40, 1646-1653 (2001).
24 Tyler, L. A., Noveron, J. C., Olmstead, M. M. & Mascharak, P. K. Oxidation of Metal-Bound Thiolato Sulfur Centers in Fe(III) and Co(III) Complexes with Carboxamido Nitrogens and Thiolato Sulfurs as Donors: Relevance to the Active Sites of Nitrile Hydratases. Inorganic Chemistry 38, 616-617 (1999).
25 Kitagawa, T. et al. A Functional Model for the Cysteinate-Ligated Non-Heme Iron Enzyme Superoxide Reductase (SOR). Journal of the American Chemical Society 128, 14448-14449 (2006).
26 Namuswe, F. et al. Rational Tuning of the Thiolate Donor in Model Complexes of Superoxide Reductase: Direct Evidence for a trans Influence in FeIII−OOR Complexes. Journal of the American Chemical Society 130, 14189-14200 (2008).
27 Namuswe, F. et al. Influence of the Nitrogen Donors on Nonheme Iron Models of Superoxide Reductase: High-Spin FeIII−OOR Complexes. Journal of the American Chemical Society 132, 157-167 (2010).
28 Fiedler, A. T., Halfen, H. L., Halfen, J. A. & Brunold, T. C. Synthesis, Structure Determination, and Spectroscopic/Computational Characterization of a Series of Fe(II)−Thiolate Model Complexes: Implications for Fe−S Bonding in Superoxide Reductases. Journal of the American Chemical Society 127, 1675-1689 (2005).
29 Ortega-Villar, N. A., Muñoz, M. C. & Real, J. A. [FeIII(bztpen)(OCH3)](PF6)2: Stable Methoxide-Iron(III) Complex Exhibiting Spin Crossover Behavior in the Solid State. European Journal of Inorganic Chemistry 2010, 5563-5567 (2010).
30 Chang, Y. H., Chan, P. M., Tsai, Y. F., Lee, G. H. & Hsu, H. F. Catalytic reduction of hydrazine to ammonia by a mononuclear iron(II) complex on a tris(thiolato)phosphine platform. Inorg Chem 53, 664-666 (2014).
31 Block, E., Ofori-Okai, G. & Zubieta, J. 2-Phosphino- and 2-phosphinylbenzenethiols: new ligand types. Journal of the American Chemical Society 111, 2327-2329 (1989).