| 研究生: |
張馨月 Chang, Hsin-yueh |
|---|---|
| 論文名稱: |
應用階層寡核苷酸引子延伸技術分析纖維素分解過程中微生物社會結構的動態變化 Detecting Dynamic Changes of Microbial Community Structure during Cellulose Degradation by Hierarchical Oligonucleotide Primer Extension(HOPE) |
| 指導教授: |
曾怡禎
Tseng, I-cheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生命科學系 Department of Life Sciences |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 68 |
| 中文關鍵詞: | 梭狀桿菌屬 、HOPE 、末端螢光限制片段長度多形性分析 (T-RFLP) 、纖維素分解菌 、16S rRNA基因分子選殖資料庫 |
| 外文關鍵詞: | Clostridium, Hierarchical Oligonucleotide Primer Extension, cellulytic bacteria, Terminal-Restriction Fragment Length Polymorphis, 16S rRNA gene |
| 相關次數: | 點閱:182 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以傳統培養與分子生物學方法,分析纖維素分解過程中微生物社會結構的動態變化且純化纖維素分解菌株。本研究之菌種取自以纖維素為基質的厭氧生物反應槽污泥,最初植種蔗渣堆肥,在60℃利用alpha-cellulose優厚培養數代,優厚培養的菌群能將濾紙分解。16S rRNA基因分子選殖資料庫共有9個OTUs。分解alpha-cellulose的微生物結構,主要由Clostridium屬所構成,其中以Clostridium cluster IV佔40.5%為最多,其次分別為cluster I含29.5%,cluster III則佔24.6%和cluster VII有3.3%的佔有率。Clostridium cluster I 包含許多能產氫的菌株,在厭氧生物反應槽樣本的菌群中,clone SC55-c5與分離的純菌株pure-A1 均和Clostridium thermobutyricum 非常相似。Clone SC55-c4和SC55-c34 與Clostridium cluster IV的菌屬較為相近,其與C. cellulosi 16S rRNA gene的相似度可達98%,分離菌株pure-A4的16S rRNA 基因序列亦與高溫纖維素分解菌株C. cellulosi較為相近。Clostridium cluster VII屬於高溫糖解產氫菌株,clone SC55-c3與分離菌株pure-rca及pure-rcb和Thermoanaerobacterium屬有99%的相似度。另外,本研究亦利用HOPE及T-RFLP偵測纖維素分解過程中菌群結構的動態變化,共測試了cellobiose、avicel cellulose及濾紙,發現在分解初期與分解後期的菌群大不相同,cellobiose分解初期以C. cellulosi為主,分解後期則以Thermoanaerobacterium thermosaccharolyticum為主;avicel cellulose分解初期以C. cellulosi為主,分解中期則以T. thermosaccharolyticum為主,分解後期又以C. cellulosi為主;濾紙分解情況與avicel cellulose相同。
This study used traditional and molecular methods to detect dynamic changes of microbial community structure during cellulose degradation and to isolate cellulose-degrading bacteria. Sample was from anaerobic bioreactor used sugar cane waste compost as seeding and influent with cellulose and the source was sugar cane waste compost. The sludge from reactor was enriched with alpha-cellulose at 60℃. The enriched bacteria can degrade filter paper. In the 16S rRNA gene clone library, there were nine OTUs and alpha-cellulose degrading microbial community belongs to genus of Clostridium. The relative abundance of Clostridium cluster IV, Clostridium cluster I, Clostridium cluster III and Clostridium cluster VII were 40.5%, 29.5%, 24.6% and 3.3%, respectively. Clostridium cluster I includes hydrogen-producing bacteria, clone SC55-c5 and isolated strain pure-A1 are closely to Clostridium thermobutyricum. Clone SC55-c4, clone SC55-c34 and isolated strain pure-A4 are closely to C. cellulosi that belong to Clostridium cluster IV which includes cellulose-degrading bacteria. Clone SC55-c3, isolated strain pure-rca and isolated strain pure-rcb belong to Clostridium cluster VII which includes thermophilic hydrogen-producing bacteria. Besides, we applied both HOPE and T-RFLP to detect dynamic changes of microbial community structure during cellulose degradation. We used three kinds of substrate, including cellobiose, avicel cellulose and filter paper. Microbial populations have changed during cellulose degradation. In the beginning of cellobiose - degrading, the dominant bacterium is C. cellulosi and in the evening of cellobiose - degrading, the dominant bacterium is Thermoanaerobacterium thermosaccharolyticum; in the beginning of avicel cellulose degradation, the dominant bacterium is C. cellulosi. In middle stage of avicel cellulose degradation, the dominant bacterium is T. thermosaccharolyticum and in the evening of avicel cellulose degradation, the dominant bacterium is C. cellulosi. And the changes of microbial populations during filter paper degradation are the same with avicel cellulose degradation.
林徽鳴。利用變性梯度凝膠電泳與末端螢光標定限制酵素片段長度多型性分析法監測微生物社會之分子指紋變化。碩士論文。國立成功大學生物學研究所,台南市,2005。
黃承泰。本土性梭菌屬纖維素分解菌株之分離及生理特性研究。國家科學委員會計畫期末報告。行政院國家科學委員會,2005。
曾豐祥。纖維素分解產氫之微生物社會結構與動態變化。碩士論文。國立成功大學生物學研究所,台南市,2007。
Altschul, S. F., W. Gish, W. Miller, E. W. Myers and D. J. Lipman. Basic local alignment search tool. J Mol Biol. 215 (3): 403-410. 1990.
An, D. S., W. T. Im, H. C. Yang, M. S. Kang, K. K. Kim, L. Jin, M. K. Kim and S. T. Lee. Cellulomonas terrae sp. nov., a cellulolytic and xylanolytic bacterium isolated from soil. Int J Syst Evol Microbiol. 55 (Pt 4): 1705-1709. 2005.
Avgerinos, G. C., and D. I. C. Wang. Selective solvent delignification for fermentation enhancement. Biotechnol Bioeng. 25 (2):67-83. 1983.
Bakalidou, A., P. Kampfer, M. Berchtold, T. Kuhnigk, M. Wenzel and H. Konig. Cellulosimicrobium variabile sp. nov., a cellulolytic bacterium from the hindgut of the termite Mastotermes darwiniensis. Int J Syst Evol Microbiol. 52 (Pt 4): 1185-1192. 2002.
Bayer, E. A., J. P. Belaich, Y. Shoham and R. Lamed. The cellulosomes: multienzyme machines for degradation of plant cell wall polysaccharides. Annu Rev Microbiol. 58: 521-554. 2004.
Bayer, E. A., H. Chanzy, R. Lamed and Y. Shoham. Cellulose, cellulases and cellulosomes. Curr Opin Struct Biol. 8 (5): 548-557. 1998.
Bayer, E. A., E. Morag and R. Lamed. The cellulosome—a treasuretrove for biotechnology. Trends Biotechnol. 12 (9):379-386. 1994.
Beguin, P., and P. M. Alzari. The cellulosome of Clostridium thermocellum. Biochem Soc Trans. 26 (2):178-185. 1998.
Beguin, P., J. Millet and J. P. Aubert. Cellulose degradation by Clostridium thermocellum: from manure to molecular biology. FEMS Microbiol Lett. 100 (1):523–528. 1992.
Berberich, J. A., B. L. Knutson, H. J. Strobel, S. Tarhan, S. E. Nokes, and K. A. Dawson. Product selectivity shifts in Clostridium thermocellum in the presence of compressed solvents. Ind Eng Chem. Res. 39 (2):4500-4505. 2000.
Bibollet, X., N. Bosc, M. Matulova, A. M. Delort, G. Gaudet and E. Forano. 13C and 1H NMR study of cellulose metabolism by Fibrobacter succinogenes S85. J Biotechnol. 77 (1): 37-47. 2000.
Burrell, P. C. The detection of environmental autoinducing peptide quorum-sensing genes from an uncultured Clostridium sp. in landfill leachate reactor biomass. Lett Appl Microbiol. 43 (4): 455-460. 2006.
Burrell, P. C., C. O'Sullivan, H. Song, W. P. Clarke and L. L. Blackall. Identification, detection, and spatial resolution of Clostridium populations responsible for cellulose degradation in a methanogenic landfill leachate bioreactor. Appl Environ Microbiol. 70 (4): 2414-2419. 2004.
Chamkha, M., J. L. Garcia and M. Labat. Metabolism of cinnamic acids by some Clostridiales and emendation of the descriptions of Clostridium aerotolerans, Clostridium celerecrescens and Clostridium xylanolyticum. Int J Syst Evol Microbiol. 51 (Pt 6):2105-2111. 2001.
Chauvet, E., and J. Merce. Aquatic hyphomycetes: their role in the decomposition of leaf-litter. Rev Sci Eau. 1 (1):203-216. 1988.
Chin, K., T. Lukow, S. Stubner and R. Conrad. Structure and function of the methanogenic archaeal community in stable cellulose-degrading enrichment cultures at two different temperatures (15 and 30℃). FEMS Microbiol Ecol. 30 (4):313-326. 1999.
Chyi, Y. T., and R. R. Dague. Effects of particulate size in anaerobic acidogenesis using cellulase as a sole carbon source. Water Environ Res. 66 (6):670-678. 1994.
Collins, M. D., P. A. Lawson, A. Willems, J. J. Cordoba, J. Fernandez-Garayzabal, P. Garcia, J. Cai, H. Hippe and J. A. Farrow. The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. Int J Syst Bacteriol. 44 (4): 812-826. 1994.
Demain, A. L., M. Newcomb and J. H. Wu. Cellulase, clostridia, and ethanol. Microbiol Mol Biol Rev. 69 (1): 124-154. 2005.
Denman, S. E. and C. S. McSweeney. Development of a real-time PCR assay for monitoring anaerobic fungal and cellulolytic bacterial populations within the rumen. FEMS Microbiol Ecol. 58 (3): 572-582. 2006.
Desvaux, M. Clostridium cellulolyticum: model organism of mesophilic cellulolytic clostridia. FEMS Microbiol Rev. 29 (4): 741-764. 2005.
Desvaux, M. Unravelling carbon metabolism in anaerobic cellulolytic bacteria. Biotechnol Prog. 22 (5): 1229-1238. 2006.
Desvaux, M., E. Guedon, and H. Petitdemange. Cellulose catabolism by Clostridium cellulolyticum growing in batch culture on defined medium. Appl Environ Microbiol. 66 (6):2461-2470. 2000.
Desvaux, M. and H. Petitdemange. Flux analysis of the metabolism of Clostridium cellulolyticum grown in cellulose-fed continuous culture on a chemically defined medium under ammonium-limited conditions. Appl Environ Microbiol. 67 (9): 3846-3851. 2001.
Desvaux, M. and H. Petitdemange. Sporulation of Clostridium cellulolyticum while grown in cellulose-batch and cellulose-fed continuous cultures on a mineral-salt based medium. Microb Ecol. 43 (2): 271-279. 2002.
Devillard, E., D. B. Goodheart, S. K. Karnati, E. A. Bayer, R. Lamed, J. Miron, K. E. Nelson and M. Morrison. Ruminococcus albus 8 mutants defective in cellulose degradation are deficient in two processive endocellulases, Cel48A and Cel9B, both of which possess a novel modular architecture. J Bacteriol. 186 (1): 136-145. 2004.
Doi, R. H. and A. Kosugi. Cellulosomes: plant-cell-wall-degrading enzyme complexes. Nat Rev Microbiol. 2 (7): 541-551. 2004.
Doi, R. H., A. Kosugi, K. Murashima, Y. Tamaru and S. O. Han. Cellulosomes from mesophilic bacteria. J Bacteriol. 185 (20): 5907-5914. 2003.
Doi, R. H. and Y. Tamaru. The Clostridium cellulovorans cellulosome: an enzyme complex with plant cell wall degrading activity. Chem Rec. 1 (1): 24-32. 2001.
Fan, L. T., Y.-H. Lee, and D. H. Beardmore. Mechanism of the enzymatic hydrolysis of cellulose: effects of major structural features of cellulose on enzymatic hydrolysis. Biotechnol Bioeng. 22 (1):177-199. 1980.
Fardeau, M. L., B. Ollivier, J. L. Garcia and B. K. Patel. Transfer of thermobacteroides leptospartum and Clostridium thermolacticum as Clostridium stercorarium subsp. leptospartum subsp. thermolacticum subsp. nov., comb. nov. and C. stercorarium subsp. thermolacticum subsp. nov., comb. nov. Int J Syst Evol Microbiol. 51 (Pt 3): 1127-1131. 2001.
Feng, Y., C. J. Duan, H. Pang, X. C. Mo, C. F. Wu, Y. Yu, Y. L. Hu, J. Wei, J. L. Tang and J. X. Feng. Cloning and identification of novel cellulase genes from uncultured microorganisms in rabbit cecum and characterization of the expressed cellulases. Appl Microbiol Biotechnol. 2007.
Fierobe, H. P., F. Mingardon, A. Mechaly, A. Belaich, M. T. Rincon, S. Pages, R. Lamed, C. Tardif, J. P. Belaich and E. A. Bayer. Action of designer cellulosomes on homogeneous versus complex substrates: controlled incorporation of three distinct enzymes into a defined trifunctional scaffoldin. J Biol Chem. 280 (16): 16325-16334. 2005.
Focher, B., A. Marzetti, M. Cattaneo, P. L. Beltrame, and P. Carniti. Effects of structural features of cotton cellulose on enzymatic hydrolysis. J Appl Polym Sci. 26 (8):1989-1999. 1981.
Fondevila, M., and B. A. Dehority. Degradation and utilization of forage hemicellulose by rumen bacteria, singly and in coculture or added sequentially. J Appl Bacteriol. 77 (5):541-548. 1994.
Freier, D., C. P. Mothershed, and J. Wiegel. Characterization of Clostridium thermocellum JW20. Appl Environ Microbiol. 54 (1):204-211. 1988.
Friberg, F., C. Otto, and B. S. Svensson. Effects of acidification dynamics of allochthonous leaf material and benthic invertebrate communities in running water, In D. Drablos and A. Tollan (ed.), Ecological impact of acid precipitation. Sur Nedbors Virkning Pa Skog og Fisk, Oslo, Norway. p.304-305. 1980.
Gama, F. M., J. A. Teixeira, and M. Mota. Cellulose morphology and enzymatic reactivity: a modified solute exclusion technique. Biotechonol Bioeng. 43 (5):381-387. 1994.
Gelhaye, E., H. Petitdemange, and R. Gay. Adhesion and growth rate of Clostridium cellulolyticum ATCC 35319 on crystalline cellulose. J Bacteriol. 175 (11):3452-3458. 1993.
Giallo, J., C. Gaudin and J. P. Belaich. Metabolism and Solubilization of Cellulose by Clostridium cellulolyticum H10. Appl Environ Microbiol. 49 (5):1216-1221. 1985.
Gilbert, H. J. Cellulosomes: microbial nanomachines that display plasticity in quaternary structure. Mol Microbiol. 63 (6):1568-76. 2007.
Guedon, E., M. Desvaux and H. Petitdemange. Improvement of cellulolytic properties of Clostridium cellulolyticum by metabolic engineering. Appl Environ Microbiol. 68 (1): 53-58. 2002.
Guedon, E., S. Payot, M. Desvaux, and H. Petitdemange. Carbon and electron flow in Clostridium cellulolyticum grown in chemostat culture on synthetic medium. J. Bacteriol. 181 (10):3262-3269. 1999.
Gusakov, A. V., A. P. Sinitsyn, J. A. Manenkova, and O. V. Protas. Enzymatic saccharification of industrial and agricultural lignocellulosic wastes—main features of the process. Appl Biochem Biotechnol. 34 (5): 625-637. 1992.
Haichar, F. Z., W. Achouak, R. Christen, T. Heulin, C. Marol, M. F. Marais, C. Mougel, L. Ranjard, J. Balesdent and O. Berge. Identification of cellulolytic bacteria in soil by stable isotope probing. Environ Microbiol. 9 (3):625-634. 2007.
Han, S. O., H. Yukawa, M. Inui and R. H. Doi. Effect of carbon source on the cellulosomal subpopulations of Clostridium cellulovorans. Microbiology. 151 (Pt 5): 1491-1497. 2005.
Han, S. O., H. Yukawa, M. Inui and R. H. Doi. Regulation of expression of cellulosomal cellulase and hemicellulase genes in Clostridium cellulovorans. J Bacteriol. 185 (20): 6067-6075. 2003.
Haruta, S., Z. Cui, Z. Huang, M. Li, M. Ishii and Y. Igarashi. Construction of a stable microbial community with high cellulose-degradation ability. Appl Microbiol Biotechnol. 59 (4-5):529-34. 2002.
He, Y. L., Y. F. Ding and Y. Q. Long. Two cellulolytic Clostridium species: Clostridium cellulosi sp. nov. and Clostridium cellulofermentans sp. nov. Int J Syst Bacteriol. 41 (2):306-309. 1991.
Herrero-Molina, A. A. The physiology of Clostridium thermocellum in relation to its energy metabolism. Ph.D. thesis, Massachusetts Institute of Technology, Cambridge. 1981.
Holub, Z., A. Simonovicova, and V. Banasova. The influence of acidification on some chemical and microbiological properties of soil, those determining plant viability. Biologia (Bratislava) 48 (6):671-675. 1993.
Hon-Nami, K., S. Goto, M. Tomita, Y. Takagi, K. Sekine, E. Okuma, S. Yonemura, K. Sato, and T. Saiki. Direct microbial conversion of cellulose to ethanol by a new isolate, Clostridium thermocellum I-1-B. In Proceedings of the 8th International Symposium on Alcohol Fuels. New Energy and Industrial Development Corporation, Tokyo, Japan. p.71-76. 1988.
Hong, P. Y., J. H. Wu and W. T. Liu. Relative abundance of Bacteroides spp. in stools and wastewaters as determined by hierarchical oligonucleotide primer extension. Appl Environ Microbiol. 74 (9):2882-2893. 2008.
Horvan, B., F. Rieu-Lesme, G. Fonty, and P. Gouet. In vitro interaction between rumen H2-producing cellulolytic microorganisms and H2-utilizing acetogenic and sulfate-reducing methanogenic bacteria. Anaerobe. 2 (5):175-180. 1996.
Islam, R., N. Cicek, R. Sparling and D. Levin. Effect of substrate loading on hydrogen production during anaerobic fermentation by Clostridium thermocellum 27405. Appl Microbiol Biotechnol. 72 (3): 576-583. 2006.
Jindou, S., I. Borovok, M. T. Rincon, H. J. Flint, D. A. Antonopoulos, M. E. Berg, B. A. White, E. A. Bayer and R. Lamed. Conservation and divergence in cellulosome architecture between two strains of Ruminococcus flavefaciens. J Bacteriol. 188 (22): 7971-7976. 2006.
Jindou, S., Q. Xu, R. Kenig, M. Shulman, Y. Shoham, E. A. Bayer and R. Lamed. Novel architecture of family-9 glycoside hydrolases identified in cellulosomal enzymes of Acetivibrio cellulolyticus and Clostridium thermocellum. FEMS Microbiol Lett. 254 (2): 308-316. 2006.
Julliand, V., A. de Vaux, L. Millet and G. Fonty. Identification of Ruminococcus flavefaciens as the predominant cellulolytic bacterial species of the equine cecum. Appl Environ Microbiol. 65 (8): 3738-3741. 1999.
Kato, S., S. Haruta, Z. J. Cui, M. Ishii and Y. Igarashi. Effective cellulose degradation by a mixed-culture system composed of a cellulolytic Clostridium and aerobic non-cellulolytic bacteria. FEMS Microbiol Ecol. 51 (1): 133-142. 2004.
Kato, S., S. Haruta, Z. J. Cui, M. Ishii and Y. Igarashi. Stable coexistence of five bacterial strains as a cellulose-degrading community. Appl Environ Microbiol. 71 (11): 7099-7106. 2005.
Kawagoshi, Y., N. Hino, A. Fujimoto, M. Nakao, Y. Fujita, S. Sugimura and K. Furukawa. Effect of inoculum conditioning on hydrogen fermentation and pH effect on bacterial community relevant to hydrogen production. J Biosci Bioeng. 100 (5): 524-530. 2005.
Keis, S., R. Shaheen and D. T. Jones. Emended descriptions of Clostridium acetobutylicum and Clostridium beijerinckii, and descriptions of Clostridium saccharoperbutylacetonicum sp. nov. and Clostridium saccharobutylicum sp. nov. Int J Syst Evol Microbiol. 51 (Pt 6): 2095-2103. 2001.
Kistner, A., and J. H. Kornelius. A small-scale, three-vessel continuous culture system for quantitative studies of plant fibre degradation by anaerobic bacteria. J Microbiol Methods. 12 (2):173-182. 1990.
Kosugi, A., K. Murashima and R. H. Doi. Characterization of xylanolytic enzymes in Clostridium cellulovorans: expression of xylanase activity dependent on growth substrates. J Bacteriol. 183 (24): 7037-7043. 2001.
Koukiekolo, R., H. Y. Cho, A. Kosugi, M. Inui, H. Yukawa and R. H. Doi. Degradation of corn fiber by Clostridium cellulovorans cellulases and hemicellulases and contribution of scaffolding protein CbpA. Appl Environ Microbiol. 71 (7): 3504-3511. 2005.
Lamed, R., E. Setter and E. A. Bayer. Characterization of a cellulose-binding, cellulase-containing complex in Clostridium thermocellum. J Bacteriol. 156 (2): 828-836. 1983.
Lamed, R. J., J. H. Lobos, and T. M. Su. Effects of stirring and hydrogen on fermentation products of Clostridium thermocellum. Appl Environ Microbiol. 54 (5):1216-1221. 1988.
Lay, J. J., C. J. Tsai, C. C. Huang, J. J. Chang, C. H. Chou, K. S. Fan, J. I. Chang and P. C. Hsu. Influences of pH and hydraulic retention time on anaerobes converting beer processing wastes into hydrogen. Water Sci Technol. 52 (1-2): 123-129. 2005.
Li, X. Streptomyces cellulolyticus sp. nov., a new cellulolytic member of the genus Streptomyces. Int J Syst Bacteriol. 47 (2): 443-445. 1997.
Liu, D., D. Liu, R. J. Zeng and I. Angelidaki. Hydrogen and methane production from household solid waste in the two-stage fermentation process. Water Res. 40 (11): 2230-2236. 2006.
Lopez-Contreras, A. M., A. A. Martens, N. Szijarto, H. Mooibroek, P. A. Claassen, J. van der Oost and W. M. de Vos. Production by Clostridium acetobutylicum ATCC 824 of CelG, a cellulosomal glycoside hydrolase belonging to family 9. Appl Environ Microbiol. 69 (2): 869-877. 2003.
Ludwig, W., O. Strunk, R. Westram, L. Richter, H. Meier, Yadhukumar, A. Buchner, T. Lai, S. Steppi, G. Jobb, W. Forster, I. Brettske, S. Gerber, A. W. Ginhart, O. Gross, S. Grumann, S. Hermann, R. Jost, A. Konig, T. Liss, R. Lussmann, M. May, B. Nonhoff, B. Reichel, R. Strehlow, A. Stamatakis, N. Stuckmann, A. Vilbig, M. Lenke, T. Ludwig, A. Bode and K. H. Schleifer. ARB: a software environment for sequence data. Nucleic Acids Res. 32 (4): 1363-1371. 2004.
Lynd, L. R., J. H. Cushman, R. J. Nichols, and C. E. Wyman. Fuel ethanol from cellulosic biomass. Science. 251 (4999):1318-1323. 1991.
Lynd, L. R., W. H. van Zyl, J. E. McBride and M. Laser. Consolidated bioprocessing of cellulosic biomass: an update. Curr Opin Biotechnol. 16 (5): 577-583. 2005.
Lynd, L. R., P. J. Weimer, W. H. van Zyl and I. S. Pretorius. Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev. 66 (3): 506-577. 2002.
Lynd, L. R. and Y. Zhang. Quantitative determination of cellulase concentration as distinct from cell concentration in studies of microbial cellulose utilization: analytical framework and methodological approach. Biotechnol Bioeng. 77 (4): 467-475. 2002.
Maamar, H., L. Abdou, C. Boileau, O. Valette and C. Tardif. Transcriptional analysis of the cip-cel gene cluster from Clostridium cellulolyticum. J Bacteriol. 188 (7): 2614-2624. 2006.
Maamar, H., P. de Philip, J. P. Belaich and C. Tardif. ISCce1 and ISCce2, two novel insertion sequences in Clostridium cellulolyticum. J Bacteriol. 185 (3): 714-725. 2003.
Maamar, H., O. Valette, H. P. Fierobe, A. Belaich, J. P. Belaich and C. Tardif. Cellulolysis is severely affected in Clostridium cellulolyticum strain cipCMut1. Mol Microbiol. 51 (2): 589-598. 2004.
Mackay, R. J., and K. E. Kersey. A preliminary study of aquatic insect communities and leaf decomposition in acid streams near Dorset, Ontario. Hydrobiologia. 122 (1):3-11. 1985.
Maidak, B. L., J. R. Cole, T. G. Lilburn, C. T. Parker, Jr., P. R. Saxman, R. J. Farris, G. M. Garrity, G. J. Olsen, T. M. Schmidt and J. M. Tiedje. The RDP-II (Ribosomal Database Project). Nucleic Acids Res. 29 (1): 173-174. 2001.
McBee, R. H. The characteristics of Clostridium thermocellum. J Bacteriol. 67 (4):505-506. 1954.
McSweeney, C. S. and S. E. Denman. Effect of sulfur supplements on cellulolytic rumen micro-organisms and microbial protein synthesis in cattle fed a high fibre diet. J Appl Microbiol. 103 (5):1757-1765. 2007.
Mergaert, J., D. Lednicka, J. Goris, M. C. Cnockaert, P. De Vos and J. Swings. Taxonomic study of Cellvibrio strains and description of Cellvibrio ostraviensis sp. nov., Cellvibrio fibrivorans sp. nov. and Cellvibrio gandavensis sp. nov. Int J Syst Evol Microbiol. 53 (Pt 2): 465-471. 2003.
Meyer, C. L., and E. T. Papoutsakis. Increased levels of ATP and NADH are associated with increased solvent production in continuous cultures of Clostridium acetobutylicum. Appl Microbiol Biotechnol. 30 (3): 450-459. 1989.
Miller, D. N., J. E. Bryant, E. L. Madsen, and W. C. Ghiorse. Evaluation and optimization of DNA extraction and purification procedures for soil and sediment samples. Appl Environ Microbiol. 65 (11):4715-24. 1999.
Miller, T. L., and M. J. Wolin. Bioconversion of cellulose to acetate with pure cultures of Ruminococcus albus and a hydrogen-using acetogen. Appl Environ Microbiol. 61 (11):3832-3835. 1995.
Miron, J., and D. Ben-Ghedalia. The degradation and utilization of wheat-straw cell-wall monosaccharide components by defined ruminal cellulolytic bacteria. Appl Microbiol Biotechnol. 38 (8):432-437. 1992.
Miron, J., D. Ben-Ghedalia and M. Morrison. Invited review: adhesion mechanisms of rumen cellulolytic bacteria. J Dairy Sci. 84 (6): 1294-1309. 2001.
Morrison, M. and J. Miron. Adhesion to cellulose by Ruminococcus albus: a combination of cellulosomes and Pil-proteins? FEMS Microbiol Lett. 185 (2): 109-115. 2000.
Mourino, F. M., R. Akkarawongsa, and P. J. Weimer. Initial pH as a determinant of cellulose digestion rate by mixed ruminal microorganisms in vitro. J Dairy Sci. 84 (5):848-859. 2001.
Murashima, K., A. Kosugi and R. H. Doi. Site-directed mutagenesis and expression of the soluble form of the family IIIa cellulose binding domain from the cellulosomal scaffolding protein of Clostridium cellulovorans. J Bacteriol. 187 (20): 7146-7149. 2005.
Ng, T. K., and J. G. Zeikus. Differential metabolism of cellobiose and glucose by Clostridium thermocellum and Clostridium thermohydrosulfuricum. J Bacteriol. 150 (3):1391-1399. 1982.
Niessen, J., U. Schroder, F. Harnisch and F. Scholz. Gaining electricity from in situ oxidation of hydrogen produced by fermentative cellulose degradation. Lett Appl Microbiol. 41 (3): 286-290. 2005.
Noach, I., F. Frolow, H. Jakoby, S. Rosenheck, L. W. Shimon, R. Lamed and E. A. Bayer. Crystal structure of a type-II cohesin module from the Bacteroides cellulosolvens cellulosome reveals novel and distinctive secondary structural elements. J Mol Biol. 348 (1): 1-12. 2005.
Nogi, Y., K. Soda and T. Oikawa. Flavobacterium frigidimaris sp. nov., isolated from Antarctic seawater. Syst Appl Microbiol. 28 (4):310-5. 2005.
Ohara, H., S. Karita, T. Kimura, K. Sakka and K. Ohmiya. Characterization of the cellulolytic complex (cellulosome) from Ruminococcus albus. Biosci Biotechnol Biochem. 64 (2): 254-260. 2000.
Ozkan, M., S. G. Desai, Y. Zhang, D. M. Stevenson, J. Beane, E. A. White, M. L. Guerinot and L. R. Lynd. Characterization of 13 newly isolated strains of anaerobic, cellulolytic, thermophilic bacteria. J Ind Microbiol Biotechnol. 27 (5): 275-280. 2001.
Park, J. S., Y. Matano and R. H. Doi. Cohesin-dockerin interactions of cellulosomal subunits of Clostridium cellulovorans. J Bacteriol. 183 (18): 5431-5435. 2001.
Pason, P., K. L. Kyu and K. Ratanakhanokchai. Paenibacillus curdlanolyticus strain B-6 xylanolytic-cellulolytic enzyme system that degrades insoluble polysaccharides. Appl Environ Microbiol. 72 (4): 2483-2490. 2006.
Pavlostathis, S. G., T. L. Miller, and M. J. Wolin. Fermentation of insoluble cellulose by continuous cultures of Ruminococcus albus. Appl Environ Microbiol. 54 (11):2655-2659. 1988.
Payot, S., E. Guedon, C. Cailliez, E. Gelhaye, and H. Petitdemange. Metabolism of cellobiose by Clostridium cellulolyticum growing in continuous culture: evidence for decreased NADH reoxidation as a factor limiting growth. Microbiology. 144 (5):375-384. 1998.
Perret, S., A. Belaich, H. P. Fierobe, J. P. Belaich and C. Tardif. Towards designer cellulosomes in Clostridia: mannanase enrichment of the cellulosomes produced by Clostridium cellulolyticum. J Bacteriol. 186 (19): 6544-6552. 2004.
Perret, S., L. Casalot, H. P. Fierobe, C. Tardif, F. Sabathe, J. P. Belaich and A. Belaich. Production of heterologous and chimeric scaffoldins by Clostridium acetobutylicum ATCC 824. J Bacteriol. 186 (1): 253-257. 2004.
Perret, S., H. Maamar, J. P. Belaich and C. Tardif. Use of antisense RNA to modify the composition of cellulosomes produced by Clostridium cellulolyticum. Mol Microbiol. 51 (2): 599-607. 2004.
Rainey, F. A., N. L. Ward, H. W. Morgan, R. Toalster and E. Stackebrandt. Phylogenetic analysis of anaerobic thermophilic bacteria: aid for their reclassification. J Bacteriol. 175 (15):4772-4779. 1993.
Ravagnani, A., K. C. Jennert, E. Steiner, R. Grunberg, J. R. Jefferies, S. R. Wilkinson, D. I. Young, E. C. Tidswell, D. P. Brown, P. Youngman, J. G. Morris and M. Young. Spo0A directly controls the switch from acid to solvent production in solvent-forming clostridia. Mol Microbiol. 37 (5): 1172-1185. 2000.
Rincon, M. T., T. Cepeljnik, J. C. Martin, R. Lamed, Y. Barak, E. A. Bayer and H. J. Flint. Unconventional mode of attachment of the Ruminococcus flavefaciens cellulosome to the cell surface. J Bacteriol. 187 (22): 7569-7578. 2005.
Rincon, M. T., J. C. Martin, V. Aurilia, S. I. McCrae, G. J. Rucklidge, M. D. Reid, E. A. Bayer, R. Lamed and H. J. Flint. ScaC, an adaptor protein carrying a novel cohesin that expands the dockerin-binding repertoire of the Ruminococcus flavefaciens 17 cellulosome. J Bacteriol. 186 (9): 2576-2585. 2004.
Rivas, R., P. Garcia-Fraile, P. F. Mateos, E. Martinez-Molina and E. Velazquez. Paenibacillus cellulosilyticus sp. nov., a cellulolytic and xylanolytic bacterium isolated from the bract phyllosphere of Phoenix dactylifera. Int J Syst Evol Microbiol. 56 (Pt 12): 2777-2781. 2006.
Saitou, N. and M. Nei. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 4 (4):406-25. 1987.
Schmitt-Wagner, D., M. W. Friedrich, B. Wagner and A. Brune. Axial Dynamics, Stability, and Interspecies Similarity of Bacterial Community Structure in the Highly Compartmentalized Gut of Soil-Feeding Termites (Cubitermes spp.). Appl Environ Microbiol. 69 (10):6018-6024. 2003.
Schmitt-Wagner, D., M. W. Friedrich, B. Wagner and A. Brune. Phylogenetic diversity, abundance, and axial distribution of bacteria in the intestinal tract of two soil-feeding termites (Cubitermes spp.). Appl Environ Microbiol. 69 (10): 6007-6017. 2003.
Schwarz, W. H. The cellulosome and cellulose degradation by anaerobic bacteria. Appl Microbiol Biotechnol. 56 (5):634-649. 2001.
Semedo, L. T., R. C. Gomes, A. A. Linhares, G. F. Duarte, R. P. Nascimento, A. S. Rosado, M. Margis-Pinheiro, R. Margis, K. R. Silva, C. S. Alviano, G. P. Manfio, R. M. Soares, L. F. Linhares and R. R. Coelho. Streptomyces drozdowiczii sp. nov., a novel cellulolytic streptomycete from soil in Brazil. Int J Syst Evol Microbiol. 54 (Pt 4): 1323-1328. 2004.
Shi, Y., C. L. Odt, and P. J. Weimer. Competition for cellulose among three predominant ruminal cellulolytic bacteria under substrate-excess and substrate-limited conditions. Appl Environ Microbiol. 63 (2):734-742. 1997.
Shi, Y., and P. J. Weimer. Response surface analysis of the effects of pH and dilution rate on Ruminococcus flavefaciens FD-1 in cellulose-fed continuous culture. Appl Environ Microbiol. 58 (8):2583-2591. 1992.
Shinkai, T. and Y. Kobayashi. Localization of ruminal cellulolytic bacteria on plant fibrous materials as determined by fluorescence in situ hybridization and real-time PCR. Appl Environ Microbiol. 73 (5): 1646-1652. 2007.
Shiratori, H., H. Ikeno, S. Ayame, N. Kataoka, A. Miya, K. Hosono, T. Beppu and K. Ueda. Isolation and characterization of a new Clostridium sp. that performs effective cellulosic waste digestion in a thermophilic methanogenic bioreactor. Appl Environ Microbiol. 72 (5): 3702-3709. 2006.
Stephanopoulos, G. Challenges in engineering microbes for biofuels production. Science. 315 (5813): 801-804. 2007.
Studier, J. A. and K. J. Keppler. A note on the neighbor-joining algorithm of Saitou and Nei. Mol Biol Evol. 5 (6): 729-731. 1988.
Svetlichnyi, V. A., T. P. Svetlichnaya, N. A. Chernykh, and G. A. Zavarzin. Anaerocellum thermophilum, new genus new species, an extremely thermophilic cellulolytic eubacterium isolated from hot springs in the valley of geysers (Russian SFSR, USSR). Mikrobiologiya. 59 (2):598-604. 1990.
Tamaru, Y., S. Karita, A. Ibrahim, H. Chan and R. H. Doi. A large gene cluster for the Clostridium cellulovorans cellulosome. J Bacteriol. 182 (20): 5906-5910. 2000.
Tardif, C., H. Maamar, M. Balfin and J. P. Belaich. Electrotransformation studies in Clostridium cellulolyticum. J Ind Microbiol Biotechnol. 27 (5): 271-274. 2001.
Thompson, D. N., H. C. Chen, and H. E. Grethlein. Comparison of pretreatment methods on the basis of available surface area. Biores Technol. 39 (8):155-163. 1992.
Thurston, B., K. A. Dawson and H. J. Strobel. Cellobiose versus glucose utilization by the ruminal bacterium Ruminococcus albus. Appl Environ Microbiol. 59 (8):2631-2637. 1993.
Ueno, Y., S. Haruta, M. Ishii and Y. Igarashi. Microbial community in anaerobic hydrogen-producing microflora enriched from sludge compost. Appl Microbiol Biotechnol. 57 (4): 555-562. 2001.
Ueno, Y., D. Sasaki, H. Fukui, S. Haruta, M. Ishii and Y. Igarashi. Changes in bacterial community during fermentative hydrogen and acid production from organic waste by thermophilic anaerobic microflora. J Appl Microbiol. 101 (2): 331-343. 2006.
Uz, I. and A. V. Ogram. Cellulolytic and fermentative guilds in eutrophic soils of the Florida Everglades. FEMS Microbiol Ecol. 57 (3): 396-408. 2006.
Van Dyke, M. I. and A. J. McCarthy. Molecular biological detection and characterization of Clostridium populations in municipal landfill sites. Appl Environ Microbiol. 68 (4): 2049-2053. 2002.
Wenzel, M., I. Schonig, M. Berchtold, P. Kampfer and H. Konig. Aerobic and facultatively anaerobic cellulolytic bacteria from the gut of the termite Zootermopsis angusticollis. J Appl Microbiol. 92 (1): 32-40. 2002.
Weimer, P. J. Effects of dilution rate and pH on the ruminal celluloytic bacterium Fibrobacter succinogenes S85 in cellulose fed continuous culture. Arch. Microbiol. 160 (4):288-294. 1993.
Weimer, P. J., A. D. French, and T. A. Calamari. Differential fermentation of cellulose allomorphs by ruminal cellulolytic bacteria. Appl Environ Microbiol. 57 (11):3101-3106. 1991.
Weimer, P. J., and J. G. Zeikus. Fermentation of cellulose and cellobiose by Clostridium thermocellum in the absence and presence of Methanobacterium thermoautotrophicum. Appl Environ Microbiol. 33 (2):289-297. 1977.
Woese, C. R. Bacterial evolution. Microbiol Rev. 51 (2): 221-271. 1987.
Wood, T. M. Properties of cellulolytic enzyme systems. Biochem Soc Trans. 13 (2): 407-410. 1985.
Wu, J. H. and W. T. Liu. Quantitative multiplexing analysis of PCR-amplified ribosomal RNA genes by hierarchical oligonucleotide primer extension reaction. Nucleic Acids Res. 35 (11):e82. 2007.
Wu, S. Y., C. H. Hung, C. N. Lin, H. W. Chen, A. S. Lee and J. S. Chang. Fermentative hydrogen production and bacterial community structure in high-rate anaerobic bioreactors containing silicone-immobilized and self-flocculated sludge. Biotechnol Bioeng. 93 (5): 934-946. 2006.
Xu, Q., E. A. Bayer, M. Goldman, R. Kenig, Y. Shoham and R. Lamed. Architecture of the Bacteroides cellulosolvens cellulosome: description of a cell surface-anchoring scaffoldin and a family 48 cellulase. J Bacteriol. 186 (4): 968-977. 2004.
Xu, Q., W. Gao, S. Y. Ding, R. Kenig, Y. Shoham, E. A. Bayer and R. Lamed. The cellulosome system of Acetivibrio cellulolyticus includes a novel type of adaptor protein and a cell surface anchoring protein. J Bacteriol. 185 (15): 4548-4557. 2003.
Zhang, Y. H. and L. R. Lynd. Cellulose utilization by Clostridium thermocellum: bioenergetics and hydrolysis product assimilation. Proc Natl Acad Sci U S A. 102 (20): 7321-7325. 2005.
Zhang, Y. H. and L. R. Lynd. Regulation of cellulase synthesis in batch and continuous cultures of Clostridium thermocellum. J Bacteriol. 187 (1): 99-106. 2005.
Zverlov, V. V., J. Kellermann and W. H. Schwarz. Functional subgenomics of Clostridium thermocellum cellulosomal genes: identification of the major catalytic components in the extracellular complex and detection of three new enzymes. Proteomics. 5 (14): 3646-3653. 2005.