| 研究生: |
溫佑良 Wen, Yu-Lian |
|---|---|
| 論文名稱: |
不同粒徑釔鋁石榴石摻鈰螢光體之合成與性質研究 Preparation and Characterization of YAG:Ce Phosphors with Different Particle Size |
| 指導教授: |
陳引幹
Chen, In-Gann |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 105 |
| 中文關鍵詞: | 奈米固態燒結法 、檸檬酸凝膠法 、膠體共沈法 、釔鋁石榴石 、螢光粉 |
| 外文關鍵詞: | nano solid state method, citric gel method, co-precipitation method, YAG, phosphor |
| 相關次數: | 點閱:153 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
螢光粉的功用與效能與其粒徑大小息息相關,一般而言,粉體粒徑小其表面積較大會有較最佳發光效率,且量子效率較佳。本研究之主旨在於探討釔鋁石榴石螢光粉體之發光特性與粒徑之關係,並於製程中添加含Si之有機物或氧化物以瞭解Si與發光強度之關係。
本研究係以膠體共沈法、檸檬酸凝膠法及奈米固態法合成釔鋁石榴石摻鈰螢光粉體,並以物理及化學的方法改變其粒徑大小,以探討粒徑對發光強度之關係。另外,為探討Si對YAG螢光發光光譜之影響,本研究亦在膠體共沈法及檸檬酸凝膠法之燒結過程分別添加SiO2及HMDS(含Si之有機物)比較其趨勢。實驗結果的分析,乃利用XRD、EDS、FTIR進行晶體結構與組成之鑑定,並利用XRD圖譜求得螢光粉體之平均粒徑,輔以其他量測粒徑之方法,如雷射粒徑分析儀、穿透式電子顯微鏡照片等,且作光激發光譜瞭解發光特性與粒徑之關係。
研究結果顯示,利用膠體共沈法以不同溫度、不同持溫時間燒結及研磨的方式,可合成出粒徑22.0至34.4nm之螢光粉體;檸檬酸凝膠法在不同溫度下亦可合成出粒徑24.4至34.8nm之螢光粉體;奈米固態法利用不同研磨時間,可得有粒徑粒徑51.8至57.9nm之螢光粉體。由光激發光譜可發現螢光體粒徑愈大,發光強度有愈佳的趨勢。
在膠體共沈法及檸檬酸凝膠法之燒結過程分別添加SiO2及HMDS,由光激發光圖譜顯示添加SiO2的濃度愈高有較佳的發光強度(10 mole%>5 mole%>1 mole%>20 mole%>0 mole% SiO2),但過多反而變差;有加入HMDS的螢光粉體亦較未添加的發光強度強很多,故Si的存在確實有助於發光。
This research is to investigate the effect of particle size of Ce-doped Y3Al5O12 (YAG: Ce) phosphors on luminescence. The effect of Si elements on luminescence properties of YAG: Ce phosphor is also studied here.
The nano-scale with well crystalline and single phase powder of Ce-doped Y3Al5O12 was synthesized by heat treatment of co-precipitation method, citric gel method and nano solid state method. Then, the different particle size of phosphors were changed by chemical and physics methods, for example, by varying calcinations temperature, holding time and grinding time. The X-ray diffraction, EDS, and FTIR were utilized in the characterization of crystal structure and phase purity. The particle size of YAG: Ce phosphors were calculated by X-ray diffraction pattern. Particle size analyzer and TEM were also utilized in the characterization of particle size. Photoluminescence (PL) spectroscopy was used to characterize the optical properties (emission intensity).
The minimum grain size was found to be 22.0 to 34.4nm for YAG phase synthesized by co-precipitation method. The minimum grain size was found to be 24.4 to 34.8nm for YAG phase synthesized by citric gel method. The minimum grain size was found to be 51.8 to 57.9nm for YAG phase synthesized by nano solid state method. The intensity of luminescence emission for Ce-doped YAG phase was found to increase with increasing particle size.
The effect of Si in YAG PL property was studied by two processing method, (a) Silicon oxide (SiO2) powders was added co-precipitation YAG and (b) HMDS (the organics compound of Si) was added in the citric gel YAG, respectively. The intensity of luminescence emission for Ce-doped YAG phase was found to increase with increasing SiO2 concentration, then reach a maximum and decrease as it further increase. Therefore, the Si element enhances the PL intensity of luminescence emission.
1. J.A. DeLuca, “An introduction to luminescence in inorganic solids”, J. Chem. Educ. 57, 8, 541(1980)
2. R.N. Bhargava, D. Gallagher, X. Hong, A. Nurmikko, “Optical Properties of Manganese-Doped Nanocrystals of ZnS”, Phys. Rev. Lett. Vol. 72(3), 416(1994)
3. 方文玲,”我國發光二極體產未來展望”,工業材料_光電特刊 138 86(1998年6月)
4. G. Blasse, B.C. Grabmaier, “Luminescent materials”, Springer Verlag, Berlin Heidelberg, Germany(1994)
5. Shigeo Shionoya, William M. Yen, “Phosphor handbook”, CRC Press LLC, New York, USA(1998)
6. 陳昱霖,”柘榴石(Y3Al5O12)螢光體之合成與性質研究”,國立成功大學材料科學及工程學系碩士論文,民國90年
7. 徐修生,”硫化鋅摻錳螢光粉之製備與性質研究”, 國立成功大學材料科學及工程學系碩士論文,民國91年
8. K S. Luslick, “Sonochemistry”, Science 23, 1439~1445(1990)
9. R. C. Ropp, “Luminescence and the solid state”, Elsevier Science Publishers, B. V., The Netherlands(1991).
10. 楊俊英著,“電子產業用螢光材料之應用調查”.工研院,民國81年
11. Q. Li, L. Gao and D. Yan, “The crystal structure and spectra of nano-scale YAG:Ce”, Mater. Chem. Phys. 64, 41(2000)
12. The Color Guide and Glossary, http://www.x-rite.com
13. R. C. Ropp, “Luminescence and the solid state”, Elsevier Science Publishers, B. V., The Netherland (1991)
14. F. J. Avella, “The Cathodoluminescence of Terbium Activated Indium Orthoborate”J. Electrochem. Soc. 113, 1225(1966).
15. R. Jagannathan, S.P. Manoharan, R. P. Rao, R. L. Narayanan and N. Rajaram, “Colour Coordinates of Some Photoluminescent Materials” Bull. Electrochem. 4, 597(1988).
16. Peizhi Yang, Peizhi Dang, Zhiwen Yin, “Concentration quenching in Yb : YAG”, J. of luminescence 97(2002) 51-54
17. P.W. Atkins, “Physical chemistry”, 6th edtion 1988
18. S. Geller and M.A. Gilleo, “Structure and ferrimagnetism of yttrium and rare earth iron garnets”, Acta crystallogr. 10, 239 (1957)
19. J.E. Geusic and L.G. Van Uitert, “Laser oscillations In Nd doped yttrium aluminum, yttrium gallium and gadolinium garnets”, Appl. Phys. Lett. 4, 182 (1964)
20. 劉如熹、王健源,”白光發光二極體製作技術”,全華圖書 2001
21. Ernest M. Levin, Carl R. Robbins and Howard F. McMurdie ; Margie K. Reser, “Phase diagrams for ceramists”, 1964-
22. 余昭蓉,“摻加稀土元素鋁酸釔螢光體之合成與特性鑑定”,交通大學應用化學研究所碩士論文,1997年
23. R. C. Ropp, “The Chemistry of Artificial Lighting Devices”, Elsevier, New York, (1993).
24. 黃榮茂,”化學化工百科亂典”,曉園出版社,台北(1987)
25. S. Geller, “Crystal chemistry of the garnets”, Z. Kristallogr 125, 1(1967)
26. R. R. Jacobs, W.F. Krupke and M.J. Weber, “Measurement of excited state absorption loss for Ce in YAG and implications for tunable 5d-4f rare earth lasers”, Appl. Phys. Lett. 33, 410(1978)
27. 莊萬發編撰“超微粒子理論應用”復漢出版社,民國84年
28. Y. Park, “Particle-size-induced diffuse phase transition in the fine-particle barium titanate porcelains” J. Phys. Conden Mater. 9 9445(1997)
29. 徐春祥,黃磊,陸袓宏,”納米ZnS中的自激活發光”,發光學報20 239(2000)
30. Yee-Shin Chang, Y-H Chang, I-G. Chen, G-J Chen, Y-L Chai, “Synthesis and characterization of zinc titanate nano crystal powders by sol gel technique”, J. of crystal growth 243(2002) 319-326
31. S. Roy, L. Wang, W. Sigmund, F. Aldinger, “Synthesis of YAG phase by a citrate nitrate combustion technique”, Materials Letters 39(1999) 138-141
32. Y.H. Zhou, J. Lin, S.B. Wang, H.J. Zhang, “Preparation of YAG:Eu phosphor by citric gel method and their luminescent properties”, Optical materials 20(2002) 13-20
33. Vequeiro and Lopez-Quintela, “Synthesis of yttrium aluminium garnet by the citrate gel process”, J. Mater. Chem. 8, 161(1998)
34. 朱穗君,”奈米級鋁酸釔螢光體微粒之製備與特性鑑定”,交通大學應用化學研究所碩士論文 1998年
35. T. Arita, N. Suyama etc, “CuInSe2 films prepared by screen printing and sintering method”, IEEE 1988, 1651
36. 羅俊仁,”溶膠凝膠法合成釔鋁氧化覺之相變化及其發光與電自旋共振光譜之研究”,交通大學電子工程研究所博士論文 1998年
37. M. Jarcho, C.H. Bolen, “Hydroxylapatite synthesis and characterization in dense polycrystalline form”, J. of materials science 11(1976) 2027-2035
38. 蔡富州,”以溶鹽法成長釔鋁柘榴石單晶粉末之研究”,成功大學礦冶工程研究所碩士論文 1980年
39. K. Ohno and T. Abe, “Effect of BaF2 on the synthesis of the single phase cubic YAG:Tb”, J. Electrochem. Soc., 638-643(1986)
40. 唐自標,”硫化鋅系螢光材料的製備與其發光特性之研究”,私立大同工學院材料工程研究所博士論文,民國87年
41. Q. Li, L. Gao, D. Yan, “The crystal structure and spectra of nano scale YAG:Ce”, Materials chemistry and physics, 64(2000) 41-44
42. 石景仁,”白光發光二極體用之釔鋁石榴石螢光粉合成及特性分析”,台灣大學化學研究所碩士論文 2001年
43. M.P. Pechini, U.S. Pat., No. 3 330 697, Jul. 11(1967)
44. M. Kakihana, "Sol-Gel Preparation of High Temperature Superconducting Oxides”, J. Sol gel Sci.Tech. , 6 7-55(1996)
45. B.D. Cullity, “Elements of X-ray diffraction”, 2nd edtion 1978
46. JCPDS-ICCD,PDF-number: 882047
47. 吳同峰,“奈米氧化鋯粉體之製作與分析”,台灣大學化學工程研究所碩士論文,2000年。
48. Paz Vaqueiro and M. Arturo Lopez-Quintela, “Synthesis of yttrium aluminium garnet by the citrate gel process”, J. of materials chemistry, 1998, 8(1), 161-163
49. 蘇品書,”超微粒子材料技術”,復漢出版,民國90年
50. 吳尚恩,” 以檸檬酸法製備鋰離子電池陰極材料-LiMn2O4之合成機構”,國立成功大學材料科學及工程學系碩士論文,民國91年