簡易檢索 / 詳目顯示

研究生: 溫佑良
Wen, Yu-Lian
論文名稱: 不同粒徑釔鋁石榴石摻鈰螢光體之合成與性質研究
Preparation and Characterization of YAG:Ce Phosphors with Different Particle Size
指導教授: 陳引幹
Chen, In-Gann
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 105
中文關鍵詞: 奈米固態燒結法檸檬酸凝膠法膠體共沈法釔鋁石榴石螢光粉
外文關鍵詞: nano solid state method, citric gel method, co-precipitation method, YAG, phosphor
相關次數: 點閱:153下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 螢光粉的功用與效能與其粒徑大小息息相關,一般而言,粉體粒徑小其表面積較大會有較最佳發光效率,且量子效率較佳。本研究之主旨在於探討釔鋁石榴石螢光粉體之發光特性與粒徑之關係,並於製程中添加含Si之有機物或氧化物以瞭解Si與發光強度之關係。
    本研究係以膠體共沈法、檸檬酸凝膠法及奈米固態法合成釔鋁石榴石摻鈰螢光粉體,並以物理及化學的方法改變其粒徑大小,以探討粒徑對發光強度之關係。另外,為探討Si對YAG螢光發光光譜之影響,本研究亦在膠體共沈法及檸檬酸凝膠法之燒結過程分別添加SiO2及HMDS(含Si之有機物)比較其趨勢。實驗結果的分析,乃利用XRD、EDS、FTIR進行晶體結構與組成之鑑定,並利用XRD圖譜求得螢光粉體之平均粒徑,輔以其他量測粒徑之方法,如雷射粒徑分析儀、穿透式電子顯微鏡照片等,且作光激發光譜瞭解發光特性與粒徑之關係。

    研究結果顯示,利用膠體共沈法以不同溫度、不同持溫時間燒結及研磨的方式,可合成出粒徑22.0至34.4nm之螢光粉體;檸檬酸凝膠法在不同溫度下亦可合成出粒徑24.4至34.8nm之螢光粉體;奈米固態法利用不同研磨時間,可得有粒徑粒徑51.8至57.9nm之螢光粉體。由光激發光譜可發現螢光體粒徑愈大,發光強度有愈佳的趨勢。

    在膠體共沈法及檸檬酸凝膠法之燒結過程分別添加SiO2及HMDS,由光激發光圖譜顯示添加SiO2的濃度愈高有較佳的發光強度(10 mole%>5 mole%>1 mole%>20 mole%>0 mole% SiO2),但過多反而變差;有加入HMDS的螢光粉體亦較未添加的發光強度強很多,故Si的存在確實有助於發光。

    This research is to investigate the effect of particle size of Ce-doped Y3Al5O12 (YAG: Ce) phosphors on luminescence. The effect of Si elements on luminescence properties of YAG: Ce phosphor is also studied here.

    The nano-scale with well crystalline and single phase powder of Ce-doped Y3Al5O12 was synthesized by heat treatment of co-precipitation method, citric gel method and nano solid state method. Then, the different particle size of phosphors were changed by chemical and physics methods, for example, by varying calcinations temperature, holding time and grinding time. The X-ray diffraction, EDS, and FTIR were utilized in the characterization of crystal structure and phase purity. The particle size of YAG: Ce phosphors were calculated by X-ray diffraction pattern. Particle size analyzer and TEM were also utilized in the characterization of particle size. Photoluminescence (PL) spectroscopy was used to characterize the optical properties (emission intensity).

    The minimum grain size was found to be 22.0 to 34.4nm for YAG phase synthesized by co-precipitation method. The minimum grain size was found to be 24.4 to 34.8nm for YAG phase synthesized by citric gel method. The minimum grain size was found to be 51.8 to 57.9nm for YAG phase synthesized by nano solid state method. The intensity of luminescence emission for Ce-doped YAG phase was found to increase with increasing particle size.

    The effect of Si in YAG PL property was studied by two processing method, (a) Silicon oxide (SiO2) powders was added co-precipitation YAG and (b) HMDS (the organics compound of Si) was added in the citric gel YAG, respectively. The intensity of luminescence emission for Ce-doped YAG phase was found to increase with increasing SiO2 concentration, then reach a maximum and decrease as it further increase. Therefore, the Si element enhances the PL intensity of luminescence emission.

    中文摘要..............................I 英文摘要..............................II 目錄..................................IV 圖目錄................................VII 表目錄................................XIII 第一章 緒論...........................1 1-1前言...............................1 1-2研究動機與目的.....................2 第二章 理論基礎與文獻回顧.............4 2-1螢光材料簡介.......................4 2-2螢光材料的分類.....................4 2-3發光機制簡介.......................6 2-3.1螢光與磷光.......................6 2-3.2激發種類及應用...................7 2-4螢光材料的發光原理.................8 2-4.1螢光體能量的激發與吸收...........8 2-4.2螢光放射和非輻射轉移.............8 2-5螢光中心型螢光材料.................10 2-5.1 螢光體結構......................10 2-5.2 螢光體的設計....................11 2-5.3 螢光體的發光特性................12 2-5. 稀土離子的發光特性...............13 2-6螢光體發光的特性的測量.............14 2-6.1亮度量測.........................14 2-6.2放射光譜的量測...................14 2.6.3量子效率的量測...................14 2-6.4衰減期的量測.....................15 2-6.5色度座標.........................16 2-7 YAG型螢光材料的簡介...............17 2-7.1 歷史沿革........................17 2-7.2釔鋁柘榴石晶體結構介紹...........18 2-7.3 YAG:Ce3+的發光光譜..............19 2-8奈米螢光體簡介.....................19 2-8.1 超徵粒子粉體之簡介..............19 2-8.2 一次粒子與二次粒子..............20 2-8.3 超微粒子的特性..................20 2-8.4納米粒子的型態與組成分析.........22 2-8.5納米螢光體之特性.................22 2-9文獻回顧...........................22 2-10螢光體製程技術及原理..............25 2-10.1固態燒結法..............25 2-10.2膠體共沈法......26 2-10.3檸檬酸凝膠熱分解法法....26 3-1實驗藥品.....................49 3-2合成步驟與流程...............50 3-2.1膠體共沈法.......50 3-2.2固態燒結法...............50 3-2.3檸檬酸凝膠法.....50 3-3儀器設備...........................51 第四章 結果與討論.....................57 4-1螢光體之合成與XRD結構分析..........57 4-1.1膠體共沈法.......................57 4-1.1.1前驅物(precursor)之熱重分析....57 4-1.1.2不同燒結溫度改變粒徑大小.......57 4-1.1.3不同持溫時間改變粒徑大小.......57 4-1.1.4不同球磨時間改變粒徑大小.......57 4-1.1.5添加SiO2 粉末..................58 4-1.2檸檬酸凝膠法.....................58 4-1.2.1前驅物(precursor)之熱重分析....58 4-1.2.2不同燒結溫度改變粒徑大小.......58 4-1.2.3添加LiCl助熔劑.................59 4-1.2.4添加HMDS.......................59 4-1.3奈米固態法.......................60 4-1.3.1不同球磨時間改變粒徑大小.......60 4-2螢光粉體之粒徑大小分析、組成鑑定與FTIR分析.......75 4-2.1 XRD繞射法.......................75 4-2.1.1膠體共沈法.....................75 4-2.1.2檸檬酸凝膠法...................75 4-2.1.3奈米固態法.....................76 4-2.2螢光體微觀結構觀察...............76 4-2.3光散射法.........................76 4-2.4組成鑑定.........................76 4-2.5 FTIR 分析.......................77 4-3螢光體發光特性之研究...............92 4-3.1粒徑大小對YAG: Ce螢光體PL光譜之影響.........92 4-3.2添加HMDS及SiO2對YAG: Ce螢光體PL光譜之影響...92 第五章 結論...........................100 5-1粒徑對發光強度之影響...............100 5-2 Si對發光強度之影響................101 參考文獻..............................102 Fig.1-1 The mechanism of energy transform.......3 Fig.2-1 Jablonski diagram, which explains photophysical processes in molecular systems........32 Fig.2-2 Configurational coordinate diagram.......33 Fig.2-3 The diagram of Stokes shift.......34 Fig.2-4 The influence of coupling on emission spectra.......34 Fig.2-5 Nonradiative transitions in the configurational coordinate diagram.(a)strong coupling; (b) weak coupling; (c) combination of both.......35 Fig.2-6 Energy transfer of the activator A in its host lattice.......36 Fig.2-7 Energy transfer of a sensitizer S to an activator A in its host lattice .......36 Fig.2-8 Munsell coordinate diagram.......37 Fig.2-9 Tristimulous Response of the Human Eye.......37 Fig.2-10 CIE Chromaticity coordinate diagram.......38 Fig.2-11 The effect of activator concentration on phosphor efficiency.......39 Fig.2-12 The effect of poison centers on phosphor efficiency.......39 Fig.2-13 The effect of temperature on phosphor efficiency.......40 Fig.2-14 Concentration quenching occurs when the activator concentration becomes sufficiently high that efficient energy transfer permits the excitation energy to migrate through the host until it is trapped at a poison site.......40 Fig.2-15 The phase diagram of the Y2O3-Al2O3 system.......41 Fig.2-16 The unit cell and properties of the YAG compound.......42 Fig.2-17 Energy levels of trivalent lanthanide ions.......43 Fig.2-18 Energy-level diagram and absorption / fluorescence spectra of Ce3+ doped Y3Al5O12 at 295.......44 Fig 2-19 The schematic aggregate and agglomerate.......45 Fig 2-20(a) The formula of citrate acid.......46 Fig 2-20(b) The formula of ethylene glycol.......46 Fig 2-21 The schematic of esterification and Polymerization .......47 Fig 2-22 The formula of Citric gel.......48 Fig.3-1 The flow chart of synthesis of YAG:Ce phosphor powders by co-precipitation.......53 Fig.3-2 The flow chart of synthesis of YAG:Ce phosphor powders by solid state .......54 Fig.3-3 The flow chart of synthesis of YAG:Ce phosphor powders by citric gel method.......55 Fig.3-4 The equipment of Labgide spectrofluorophotometer.......56 Fig. 4-1 The XRD pattern of YAG powders by co-precipitation and calcinated at 850℃ for 2hrs 65 Fig. 4-2 DTA-TGA analysis of YAG precursor powders by co-precipitation method .......65 Fig.4-3 The XRD patterns of YAG: Ce phosphor prepared by co-precipitation and calcinate 8 hrs at (a)980℃ (b)900℃ (c)850℃ (d)800℃.......66 Fig.4-4 The XRD patterns of YAG: Ce phosphor prepared by co-precipitationand calcinate at 850℃for (a) 8 hr (b) 32 hr (c) 64 hr (d) 128hr.......66 Fig.4-5 The XRD patterns of YAG: Ce phosphor prepared by co-precipitation and calcinate at 850℃for 128hr with grinding time (a)12 hr (b)25 hr (c)50 hr (d)100 hr.......67 Fig.4-6 The XRD (420) peak intensity of YAG: Ce phosphors with different grinding time.......67 Fig.4-7 The XRD patterns of YAG: Ce phosphor prepared by co-precipitation method and adding (a) 0mole% (b) 1mole% (c) 5mole% (d) 10mole% SiO2.......68 Fig. 4-8 The XRD pattern of YAG powders by citric gel method and calcinated at 900℃ for 2hrs.......69 Fig. 4-9 DTA-TGA analysis of YAG precursor powders by citric gel method 69 Fig.4-10 The XRD patterns of YAG: Ce phosphor prepared by citric gel method and calcinate 2 hrs at (a) 1100℃(b) 1000℃(c) 900℃(d)800℃(e)700℃.......70 Fig.4-11 The XRD patterns of YAG: Ce phosphor prepared by citric gel method and calcinate for 2 hrs at (a) 650℃with adding LiCl flux (b) 800℃no flux.......70 Fig 4-12 金屬氧化物利用sol-gel法所製成之非晶質材料經熱處理過程其微觀結構之示意圖 .......71 Fig 4-13 經由HMDS 處理之前驅物,其粒子與粒子之間在熱處理過程中,不會因為表面官能基的反應而拉近,而各自單獨進行局部性的結晶過程.......72 Fig.4-14 The FTIR spectra patterns of YAG: Ce phosphor precursor by citric gel method.......73 Fig.4-15 The XRD patterns of YAG: Ce phosphor prepared by citric gel method calcinated at 800℃ for 2hr (a) no HMDS (b) adding HMDS.......73 Fig. 4-16 The XRD pattern of YAG by nano solid state sintered at 1200℃ for 4hr .......74 Fig.4-17 The XRD patterns of YAG: Ce phosphor prepared by nano solid state sintered at 1200℃ for 4hr and with a grinding time (a)12 hr (b)50 hr (c)100 hr .......74 Fig 4-18 A plot of log(grain size) (log D) versus the reciprocal of absolute temperature(1/T) of samples processed by co-precipitation method.......81 Fig 4-19 A plot of log(grain size) (log D) versus the reciprocal of absolute temperature(1/T) of samples processed by citric gel method.......81 Fig. 4-20.The TEM picture and SAD of YAG:Ce powder by citric gel method.......82 Fig. 4-21 The TEM picture and SAD of YAG:Ce powder by co-precipitation method.......82 Fig. 4-22 The TEM picture and SAD of YAG:Ce powder by nano solid state method .......83 Fig. 4-23 The particle size analysis of YAG:Ce by co-precipitation method calcinated at 980℃ for 8hr.......83 Fig. 4-24 The particle size analysis of YAG:Ce by co-precipitation method calcinated at 900℃ for 8h.......84 Fig. 4-25 The particle size analysis of YAG:Ce by co-precipitation method calcinated at 850℃ for 8hr.......84 Fig. 4-26 The particle size analysis of YAG:Ce by co-precipitation method calcinated at 850℃ for 32hr.......85 Fig. 4-27 The particle size analysis of YAG:Ce by co-precipitation method calcinated at 850℃ for 64hr.......85 Fig. 4-28 The particle size analysis of YAG:Ce by co-precipitation method calcinated at 850℃ for 128hr and with grinding 12hr.......86 Fig. 4-29 The particle size analysis of YAG:Ce by co-precipitation method calcinated at 850℃ for 128hrfor 850℃ 128hr with grinding 25hr.......86 Fig. 4-30 The particle size analysis of YAG:Ce by co-precipitation method calcinated at 850℃ for 128hr with grinding 50hr.......87 Fig. 4-31 The particle size analysis of YAG:Ce by co-precipitation method calcinated at 850℃ for 128hr with grinding 100hr.......87 Fig. 4-32 The particle size analysis of YAG:Ce by citric gel method calcinated at 800℃ for 2hr.......88 Fig. 4-33 The particle size analysis of YAG:Ce by citric gel method calcinated at 900℃ for 2hr.......88 Fig. 4-34 The particle size analysis of YAG:Ce by citric gel method calcinated at 1000℃ for 2hr.......89 Fig. 4-35 The particle size analysis of YAG:Ce by citric gel method calcinated at 1100℃ for 2hr.......89 Fig. 4-36 The particle size analysis of YAG:Ce by nano solid state method calcinated at 1200℃ for 4hr with grinding 12hr.......90 Fig. 4-37 The particle size analysis of YAG:Ce by nano solid state method calcinated at 1200℃ for 4hr with grinding 50hr.......90 Fig. 4-38 The particle size analysis of YAG:Ce by nano solid state method calcinated at 1200℃ for 4hr with grinding 100hr.......91 Fig. 4-39 The FTIR analysis of YAG:Ce phosphor processed by (a) nano solid state (b) citric gel method (c) co-precipitation method.......91 Fig. 4-40 Effect of sintering temperature on the PL of YAG:Ce phosphors by co-precipitation method.......94 Fig. 4-41 Effect of different holding time at 850℃ on the PL of YAG:Ce phosphors by co-precipitation method.......94 Fig. 4-42 Effect of different grinding time on the PL of YAG:Ce phosphors prepared by co-precipitation method.......95 Fig. 4-43 Effect of different sintering temperatures on the PL of YAG:Ce phosphors prepared by citric gel method.......95 Fig. 4-44 Effect of different grinding time on the PL of YAG:Ce phosphors by nano solid state method.......96 Fig. 4-45 The integration intensity of emission spectra of YAG:Ce phosphor vs. particle size by different synthesis methods.......96 Fig. 4-46 Effect of adding HMDS on the PL of YAG:Ce phosphors by citric gel method.......97 Fig. 4-47 The integration intensity of emission spectra of YAG:Ce phosphor vs. particle size by citric gel method with(out) HMDS.......97 Fig. 4-48 Effect of adding SiO2 on the PL of YAG:Ce phosphors by co-precipitation method.......98 Fig. 4-49 The integration intensity of emission spectra of YAG:Ce phosphor vs. particle size by co-precipitation method added different amounts SiO2 98 Fig. 4-50 Effect of adding (or not adding) 10mole% SiO2 on the PL of YAG:Ce phosphors by co-precipitation method.......99 Fig. 4-51 The integration intensity of emission spectra of YAG:Ce phosphor prepared by co-precipitation method added 10mole% SiO2 after(or before calcinations).......99 Table 2-1 Phosphor Devices.......28 Table 2-2 Anions that can be used to form Phosphor.......29 Table 2-3 Anions that are optically active-“self-activation’.......29 Table 2-4 Cations that can be used to form phosphors.......30 Table 2-5 Cations that can be used as activator center.......30 Table 2-6 Cations with unpaired spins which function as quenchers of luminescence.......31 Table 2-7 The measurement of particle size.......31 Table 2-8 The radius of metal ion.......31 Table 4-1 Experimental design of different calcination temperatures by co-precipitation method.......61 Table 4-2 Experimental design of different holding times by co-precipitation method.......61 Table 4-3 Experimental design of different grinding times by co-precipitation method.......62 Table 4-4 Experimental design of adding different amounts SiO2 powders by co-precipitation method.......62 Table 4-5 Experimental design of different calcination temperatures by citric gel method.......63 Table 4-6 Experimental design of citric gel method adding 20wt% LiCl flux .......63 Table 4-7 Experimental design of different calcination temperatures by citric gel method adding HMDS.......63 Table 4-8 Experimental design of different grinding times by Nano solid state method.......64 Table 4-9 YAG:Ce particle size from Scherrer’s equation (by XRD pattern) .......78 Table 4-10 EDS analysis of th YAG:Ce phosphors prepared by co-precipitation method.......80 Table 4-11 EDS analysis of th YAG:Ce phosphors prepared by citric gel method .......80 Table 4-12 EDS analysis of th YAG:Ce phosphors prepared by nano solid state method.......80

    1. J.A. DeLuca, “An introduction to luminescence in inorganic solids”, J. Chem. Educ. 57, 8, 541(1980)
    2. R.N. Bhargava, D. Gallagher, X. Hong, A. Nurmikko, “Optical Properties of Manganese-Doped Nanocrystals of ZnS”, Phys. Rev. Lett. Vol. 72(3), 416(1994)
    3. 方文玲,”我國發光二極體產未來展望”,工業材料_光電特刊 138 86(1998年6月)
    4. G. Blasse, B.C. Grabmaier, “Luminescent materials”, Springer Verlag, Berlin Heidelberg, Germany(1994)
    5. Shigeo Shionoya, William M. Yen, “Phosphor handbook”, CRC Press LLC, New York, USA(1998)
    6. 陳昱霖,”柘榴石(Y3Al5O12)螢光體之合成與性質研究”,國立成功大學材料科學及工程學系碩士論文,民國90年
    7. 徐修生,”硫化鋅摻錳螢光粉之製備與性質研究”, 國立成功大學材料科學及工程學系碩士論文,民國91年
    8. K S. Luslick, “Sonochemistry”, Science 23, 1439~1445(1990)
    9. R. C. Ropp, “Luminescence and the solid state”, Elsevier Science Publishers, B. V., The Netherlands(1991).
    10. 楊俊英著,“電子產業用螢光材料之應用調查”.工研院,民國81年
    11. Q. Li, L. Gao and D. Yan, “The crystal structure and spectra of nano-scale YAG:Ce”, Mater. Chem. Phys. 64, 41(2000)
    12. The Color Guide and Glossary, http://www.x-rite.com
    13. R. C. Ropp, “Luminescence and the solid state”, Elsevier Science Publishers, B. V., The Netherland (1991)
    14. F. J. Avella, “The Cathodoluminescence of Terbium Activated Indium Orthoborate”J. Electrochem. Soc. 113, 1225(1966).
    15. R. Jagannathan, S.P. Manoharan, R. P. Rao, R. L. Narayanan and N. Rajaram, “Colour Coordinates of Some Photoluminescent Materials” Bull. Electrochem. 4, 597(1988).
    16. Peizhi Yang, Peizhi Dang, Zhiwen Yin, “Concentration quenching in Yb : YAG”, J. of luminescence 97(2002) 51-54
    17. P.W. Atkins, “Physical chemistry”, 6th edtion 1988
    18. S. Geller and M.A. Gilleo, “Structure and ferrimagnetism of yttrium and rare earth iron garnets”, Acta crystallogr. 10, 239 (1957)
    19. J.E. Geusic and L.G. Van Uitert, “Laser oscillations In Nd doped yttrium aluminum, yttrium gallium and gadolinium garnets”, Appl. Phys. Lett. 4, 182 (1964)
    20. 劉如熹、王健源,”白光發光二極體製作技術”,全華圖書 2001
    21. Ernest M. Levin, Carl R. Robbins and Howard F. McMurdie ; Margie K. Reser, “Phase diagrams for ceramists”, 1964-
    22. 余昭蓉,“摻加稀土元素鋁酸釔螢光體之合成與特性鑑定”,交通大學應用化學研究所碩士論文,1997年
    23. R. C. Ropp, “The Chemistry of Artificial Lighting Devices”, Elsevier, New York, (1993).
    24. 黃榮茂,”化學化工百科亂典”,曉園出版社,台北(1987)
    25. S. Geller, “Crystal chemistry of the garnets”, Z. Kristallogr 125, 1(1967)
    26. R. R. Jacobs, W.F. Krupke and M.J. Weber, “Measurement of excited state absorption loss for Ce in YAG and implications for tunable 5d-4f rare earth lasers”, Appl. Phys. Lett. 33, 410(1978)
    27. 莊萬發編撰“超微粒子理論應用”復漢出版社,民國84年
    28. Y. Park, “Particle-size-induced diffuse phase transition in the fine-particle barium titanate porcelains” J. Phys. Conden Mater. 9 9445(1997)
    29. 徐春祥,黃磊,陸袓宏,”納米ZnS中的自激活發光”,發光學報20 239(2000)
    30. Yee-Shin Chang, Y-H Chang, I-G. Chen, G-J Chen, Y-L Chai, “Synthesis and characterization of zinc titanate nano crystal powders by sol gel technique”, J. of crystal growth 243(2002) 319-326
    31. S. Roy, L. Wang, W. Sigmund, F. Aldinger, “Synthesis of YAG phase by a citrate nitrate combustion technique”, Materials Letters 39(1999) 138-141
    32. Y.H. Zhou, J. Lin, S.B. Wang, H.J. Zhang, “Preparation of YAG:Eu phosphor by citric gel method and their luminescent properties”, Optical materials 20(2002) 13-20
    33. Vequeiro and Lopez-Quintela, “Synthesis of yttrium aluminium garnet by the citrate gel process”, J. Mater. Chem. 8, 161(1998)
    34. 朱穗君,”奈米級鋁酸釔螢光體微粒之製備與特性鑑定”,交通大學應用化學研究所碩士論文 1998年
    35. T. Arita, N. Suyama etc, “CuInSe2 films prepared by screen printing and sintering method”, IEEE 1988, 1651
    36. 羅俊仁,”溶膠凝膠法合成釔鋁氧化覺之相變化及其發光與電自旋共振光譜之研究”,交通大學電子工程研究所博士論文 1998年
    37. M. Jarcho, C.H. Bolen, “Hydroxylapatite synthesis and characterization in dense polycrystalline form”, J. of materials science 11(1976) 2027-2035
    38. 蔡富州,”以溶鹽法成長釔鋁柘榴石單晶粉末之研究”,成功大學礦冶工程研究所碩士論文 1980年
    39. K. Ohno and T. Abe, “Effect of BaF2 on the synthesis of the single phase cubic YAG:Tb”, J. Electrochem. Soc., 638-643(1986)
    40. 唐自標,”硫化鋅系螢光材料的製備與其發光特性之研究”,私立大同工學院材料工程研究所博士論文,民國87年
    41. Q. Li, L. Gao, D. Yan, “The crystal structure and spectra of nano scale YAG:Ce”, Materials chemistry and physics, 64(2000) 41-44
    42. 石景仁,”白光發光二極體用之釔鋁石榴石螢光粉合成及特性分析”,台灣大學化學研究所碩士論文 2001年
    43. M.P. Pechini, U.S. Pat., No. 3 330 697, Jul. 11(1967)
    44. M. Kakihana, "Sol-Gel Preparation of High Temperature Superconducting Oxides”, J. Sol gel Sci.Tech. , 6 7-55(1996)
    45. B.D. Cullity, “Elements of X-ray diffraction”, 2nd edtion 1978
    46. JCPDS-ICCD,PDF-number: 882047
    47. 吳同峰,“奈米氧化鋯粉體之製作與分析”,台灣大學化學工程研究所碩士論文,2000年。
    48. Paz Vaqueiro and M. Arturo Lopez-Quintela, “Synthesis of yttrium aluminium garnet by the citrate gel process”, J. of materials chemistry, 1998, 8(1), 161-163
    49. 蘇品書,”超微粒子材料技術”,復漢出版,民國90年
    50. 吳尚恩,” 以檸檬酸法製備鋰離子電池陰極材料-LiMn2O4之合成機構”,國立成功大學材料科學及工程學系碩士論文,民國91年

    下載圖示 校內:2004-07-30公開
    校外:2004-07-30公開
    QR CODE