簡易檢索 / 詳目顯示

研究生: 蘇浚有
YOU, SU ZI
論文名稱: 導離子高分子/導離子陶瓷之複合固態電解質之製備鑑定與其於鋰電池之應用
Preparation and Characterization of Ionic Conducting Polymer/ Ceramic Ion Conductor Composite Solid State Electrolytes for Lithium Batteries
指導教授: 郭炳林
Kuo, Ping-Lin
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 102
中文關鍵詞: 鋰電池複合固態電解質LATP三明治結構電解質PIC 複合固態電解質
外文關鍵詞: Lithium batteries, LATP, PIC Composite Solid State Electrolyte, Sandwiched Structure
相關次數: 點閱:89下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鋰電池受限於內部的液態電解質易燃、漏液等問題,因此衍生出安全性高的固態電解質的研究來解決此疑慮。本研究利用導離子型高分子 ( 導離子高分子 ) 與無機陶瓷材料 ( Ceramic ) 進行混摻,也混摻鋰鹽,製備出複合固態電解質。XRD分析中,可以確認複合固態電解質依然保有陶瓷材料的晶型,有助鋰離子在陶瓷材料內部傳遞;其在60 oC測得離子傳導度3.80 x 10-4 S/cm。複合固態電解質之電化學穩定窗口可達5.0 V以上,鋰離子遷移數亦測得0.243。本研究導入三明治結構電解質概念,塗佈Polymer層於複合膜兩面,旨在改善電解質與電極的接觸性。本研究製備之複合固態電解質在對稱鋰金屬0.1 mA cm-2電流充放電測試下,經過850小時後,電壓變化不大,顯示其擁有高穩定性。本研究在60 oC進行電池充放電能力測試,在1 C放電速率下測得123.51 mAh/g,保有86.54 %的電容維持率 ( 相對於0.1 C )。於電池循環壽命測試中 ( 0.2 C充電、0.5 C放電 ) 下,經過了 150圈後其仍有電容維持率79.04 %,庫倫效率為99.32 %。電池經過150圈充放電測試後,透過SEM影像觀察充放電鋰金屬表面,相較於一般液態電解質生成明顯鋰枝晶層,本研究製之三明治結構電解質 ( S.W.E ) 無明顯鋰枝晶生成。由上述所述可歸納本研究所製備之電解質具備優異的電化學特性,亦能夠抑制鋰枝晶刺穿電解質,將其應用在鋰電池中,可望提升電池的安全性。

    In this study, we used Ceramic Ion Conductor LATP to mix with Ionic Conducting Polymer to fabricate a high safety Polymer in Ceramic Composite Solid State Electrolytes (PIC-CSE). We found that PIC-CSE demonstrated good results: Ionic Conductivity hit 6.58 x 10-5 S/cm2 at 60 oC, high decomposition temperature 287.08 oC, strong mechanical strength 2736.93 MPa, large electrochemical window up to 5V and the lithium transference number was 0.243.

    To elevate the electrochemical performance, a thin layer of polymer was coated on both side of PIC-CSE, so it denominated as PIC Sandwiched Structure Electrolyte (PIC-SWE). PIC-SWE showed good capacity of 123.51 mAh/g under 1.0C discharging. Moreover, from the cycle life, we collected the capacity retention was 79.04 % while the columbic efficiency was 99.32 % after 0.2 C Charging, 0.5 C Discharging test for a continuous 150th cycles. Besides, the high stability with no short circuit occurred under Lithium Symmetry 0.1mA cm-2 Charging-Discharging test after 850 hours. To understand the lithium surface morphology, SEM was carried out and there wasn’t observe obvious dendrite growth compared to commercialized liquid electrolyte Lithium Batteries. As a conclusion, these high safety PIC-SWE is believed to have high potential to be commercialized.

    中文摘要 i Abstract iii 誌謝 xiv 表目錄 xviii 圖目錄 xix 第一章 緒論 1 1.1前言 1 1.2 鋰電池簡介 2 1.3電解質 4 1.4 研究動機 5 第二章 文獻回顧 6 2.1 鋰離子電池基本工作原理 6 2.2 正極材料 7 2.2.1 磷酸鋰鐵LiFePO4 ( LFP ) 7 2.2.2 鋰鈷氧LiCoO2 ( LCO ) 9 2.2.3 鋰鎳鈷錳氧Li(NixCoyMnz)O2( NCM ) 10 2.3 陶瓷材料 11 2.3.1 NASICON 結構 12 2.3.2 Garnet Type 石榴石結構 14 2.3.3 Perovskite-type 鈣鈦礦結構陶瓷材料 16 2.3.4 LISICON-type 陶瓷材料 18 2.4 陶瓷-高分子複合型電解質 ( Ceramic-Polymer Composite Electrolyte ) 19 2.4.1 Polymer in Ceramic ( PIC ) 複合型固態電解質 20 2.5 Polymer/Composite Electrolyte/Polymer Sandwiched Structure Electrolyte 高分子/固態電解質/高分子 三明治結構電解質 26 第三章 實驗 29 3.1 實驗藥品與材料 29 3.2儀器設備 30 3.3 樣品製備 31 3.3.1 PIC複合電解質製備方法 ( PIC-Film ) 31 3.3.2 Polymer/PIC Composite Electrolyte/Polymer Sandwiched Structure Electrolyte (S.W.E) 三明治結構電解質 33 3.4 鋰電池之製備與組裝 34 3.4.1 製備LiFePO4 正極 34 3.4.2 鈕扣型電池組裝 34 3.5 材料性質分析與鑑定 35 3.5.1 傅立葉轉換紅外線光譜儀( FT-IR ) 35 3.5.2 X-射線繞射光譜儀 ( XRD ) 35 3.5.3 熱重分析儀 ( TGA ) 35 3.5.4 掃描式電子顯微鏡 ( SEM ) 36 3.5.5 多功能掃描探針顯微鏡 ( Scanning Probe Microscopy, SPM ) 37 3.5.6 流變性質測試 ( Rheological properties ) 38 3.5.7 穿透式電子顯微鏡 ( TEM ) 38 3.5.8 孔隙率計算 ( Porosity ) 38 3.6 電化學測試 39 3.6.1 線性掃描伏安法 ( Linear Sweep Voltammetry, LSV ) 39 3.6.2 離子傳導度 ( Ionic Conductivity ) 39 3.6.3 電化學阻抗頻譜法 ( EIS ) 40 3.6.4 電池充放電能力測試 ( C-Rate Test ) 41 3.6.5 電池循環壽命測試 ( Cycle Life Test ) 42 3.6.6 對稱鋰金屬時效穩定分析 ( Symmetry Li Ageing Test ) 42 3.6.7 對稱鋰金屬電池循環穩定性分析 ( Symmetry Li Cycle Stability Test ) 43 3.6.8 鋰離子遷移數之量測 ( Lithium Transference Number ) 43 第四章 結果與討論 44 4.1 導離子高分子與交聯劑合成鑑定與分析 44 4.1.1 傅立葉轉換紅外線光譜分析 ( FT-IR ) 44 4.1.2 X-射線繞射光圖譜 ( XRD ) 45 4.1.3穿透式電子顯微鏡圖譜 ( TEM ) 46 4.1.4 熱重分析 ( TGA ) 47 4.1.5 多功能掃描探針顯微鏡 ( SPM ) 49 4.1.6 PIC複合電解質之儲存模量與損失模量 50 4.1.7 電解質之截面分析 52 4.2 對稱鋰金屬時效穩定分析 ( Symmetry Li Ageing Test ) 55 4.3 對稱鋰金屬電池循環穩定性分析 60 4.4 線性掃描伏安法 ( LSV ) 65 4.5 離子傳導度 66 4.6 鋰離子遷移數分析 70 4.7 電池充放電能力測試 ( C-Rates Test ) 74 4.8 電池循環壽命測試 ( Cycle-Life Test ) 81 4.9 循環充放電圈數阻抗圖 ( Cycle Resistance Test ) 86 4.10 循環充放電圈數阻抗圖擬合分析 90 4.11 鋰金屬表面分析 93 第五章 結論 95 第六章 參考文獻 96

    [1] J.-M. Tarascon and M. Armand, "Issues and challenges facing rechargeable lithium batteries," in Materials for Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group: World Scientific, 2011, pp. 171-179.
    [2] G. N. Lewis and F. G. Keyes, "THE POTENTIAL OF THE LITHIUM ELECTRODE," Journal of the American Chemical Society, vol. 35, no. 4, pp. 340-344, 1913.
    [3] X. B. Cheng, R. Zhang, C. Z. Zhao, F. Wei, J. G. Zhang, and Q. Zhang, "A review of solid electrolyte interphases on lithium metal anode," Advanced Science, vol. 3, no. 3, p. 1500213, 2016.
    [4] M. D. Tikekar, S. Choudhury, Z. Tu, and L. A. Archer, "Design principles for electrolytes and interfaces for stable lithium-metal batteries," Nature Energy, vol. 1, no. 9, p. 16114, 2016.
    [5] M. N. Office, "Doubling Battery Power of Consumer Electronics," in MIT News Office ed, 2016.
    [6] 工業技術研究院, "鋰電池材料分析發展," ed, 2009.
    [7] L.-I. B. Market, "(By Material Type: Cathode, Electrolytic Solution, Anode, and Others; By Industry Vertical: Electronics, Automotive, Industrial, and Others; By Geography: North America, Europe, Asia-Pacific, and Row) Global Scenario, Market Size, Outlook, Trend and Forecast, ," ed, 2017, pp. 2015-2024.
    [8] N. Nitta, F. Wu, J. T. Lee, and G. Yushin, "Li-ion battery materials: present and future," Materials today, vol. 18, no. 5, pp. 252-264, 2015.
    [9] A. K. Padhi, K. S. Nanjundaswamy, and J. B. Goodenough, "Phospho‐olivines as positive‐electrode materials for rechargeable lithium batteries," Journal of the electrochemical society, vol. 144, no. 4, pp. 1188-1194, 1997.
    [10] T. Satyavani, A. S. Kumar, and P. S. Rao, "Methods of synthesis and performance improvement of lithium iron phosphate for high rate Li-ion batteries: a review," Engineering Science and Technology, an International Journal, vol. 19, no. 1, pp. 178-188, 2016.
    [11] L.-H. Hu, F.-Y. Wu, C.-T. Lin, A. N. Khlobystov, and L.-J. Li, "Graphene-modified LiFePO 4 cathode for lithium ion battery beyond theoretical capacity," Nature communications, vol. 4, p. 1687, 2013.
    [12] Y. Xia, M. Yoshio, and H. Noguchi, "Improved electrochemical performance of LiFePO4 by increasing its specific surface area," Electrochimica acta, vol. 52, no. 1, pp. 240-245, 2006.
    [13] S.-Y. Chung, J. T. Bloking, and Y.-M. Chiang, "Electronically conductive phospho-olivines as lithium storage electrodes," Nature materials, vol. 1, no. 2, p. 123, 2002.
    [14] C. Julien, A. Mauger, K. Zaghib, and H. Groult, "Comparative issues of cathode materials for Li-ion batteries," Inorganics, vol. 2, no. 1, pp. 132-154, 2014.
    [15] F. Schipper, E. M. Erickson, C. Erk, J.-Y. Shin, F. F. Chesneau, and D. Aurbach, "Recent advances and remaining challenges for lithium ion battery cathodes I. Nickel-Rich, LiNixCoyMnzO2," Journal of The Electrochemical Society, vol. 164, no. 1, pp. A6220-A6228, 2017.
    [16] Y.-M. Choi, S.-I. Pyun, and S.-I. Moon, "Effects of cation mixing on the electrochemical lithium intercalation reaction into porous Li1− δNi1− yCoyO2 electrodes," Solid State Ionics, vol. 89, no. 1-2, pp. 43-52, 1996.
    [17] Z. Chen et al., "Hierarchical porous LiNi 1/3 Co 1/3 Mn 1/3 O 2 nano-/micro spherical cathode material: Minimized cation mixing and improved Li+ mobility for enhanced electrochemical performance," Scientific reports, vol. 6, p. 25771, 2016.
    [18] J. C. Bachman et al., "Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction," Chemical reviews, vol. 116, no. 1, pp. 140-162, 2015.
    [19] H. Y. P. Hong, "Crystal structures and crystal chemistry in the system Na/sub 1+ x/Zr/sub 2/Si/sub x/P/sub 3-x/O/sub 12," Mater. Res. Bull.;(United States), vol. 11, no. 2, 1976.
    [20] J. Goodenough, H.-P. Hong, and J. Kafalas, "Fast Na+-ion transport in skeleton structures," Materials Research Bulletin, vol. 11, no. 2, pp. 203-220, 1976.
    [21] F. Sudreau, D. Petit, and J. Boilot, "Dimorphism, phase transitions, and transport properties in LiZr2 (PO4) 3," Journal of Solid State Chemistry, vol. 83, no. 1, pp. 78-90, 1989.
    [22] H. Aono, N. Imanaka, and G.-y. Adachi, "High Li+ conducting ceramics," Accounts of chemical research, vol. 27, no. 9, pp. 265-270, 1994.
    [23] H. Aono, E. Sugimoto, Y. Sadaaka, N. Imanaka, and G. Adachi, "Ionic conductivity of the lithium titanium phosphate (Li/sub 1+ x/M/sub x/Ti/sub 2-x/(PO/sub 4/)/sub 3/, M= Al, Sc, Y, and La) systems," Journal of the Electrochemical Society, vol. 136, no. 2, p. 590, 1989.
    [24] H. Aono, E. Sugimoto, Y. Sadaoka, N. Imanaka, and G. y. Adachi, "Ionic conductivity of solid electrolytes based on lithium titanium phosphate," Journal of the electrochemical society, vol. 137, no. 4, pp. 1023-1027, 1990.
    [25] H. Aono, E. Sugimoto, Y. Sadaoka, N. Imanaka, and G.-y. Adachi, "Ionic conductivity and sinterability of lithium titanium phosphate system," Solid State Ionics, vol. 40, pp. 38-42, 1990.
    [26] 工業技術研究院, "無機固態電解質材料(上)," ed, 2018.
    [27] B. Wu et al., "The role of the solid electrolyte interphase layer in preventing Li dendrite growth in solid-state batteries," Energy & Environmental Science, vol. 11, no. 7, pp. 1803-1810, 2018.
    [28] J. Feng, L. Lu, and M. Lai, "Lithium storage capability of lithium ion conductor Li1. 5Al0. 5Ge1. 5 (PO4) 3," Journal of Alloys and Compounds, vol. 501, no. 2, pp. 255-258, 2010.
    [29] X. He, Y. Zhu, and Y. Mo, "Origin of fast ion diffusion in super-ionic conductors," Nature communications, vol. 8, p. 15893, 2017.
    [30] H. Kasper, "Series of rare earth garnets Ln3+ 3M2Li+ 3O12 (M= Te, W)," Inorganic Chemistry, vol. 8, no. 4, pp. 1000-1002, 1969.
    [31] V. Thangadurai, H. Kaack, and W. J. Weppner, "Novel fast lithium ion conduction in garnet‐type Li5La3M2O12 (M= Nb, Ta)," Journal of the American Ceramic Society, vol. 86, no. 3, pp. 437-440, 2003.
    [32] V. Thangadurai and W. Weppner, "Effect of sintering on the ionic conductivity of garnet-related structure Li5La3Nb2O12 and In-and K-doped Li5La3Nb2O12," Journal of Solid State Chemistry, vol. 179, no. 4, pp. 974-984, 2006.
    [33] R. Murugan, V. Thangadurai, and W. Weppner, "Fast lithium ion conduction in garnet‐type Li7La3Zr2O12," Angewandte Chemie International Edition, vol. 46, no. 41, pp. 7778-7781, 2007.
    [34] S. Ohta, T. Kobayashi, and T. Asaoka, "High lithium ionic conductivity in the garnet-type oxide Li7− X La3 (Zr2− X, NbX) O12 (X= 0–2)," Journal of Power Sources, vol. 196, no. 6, pp. 3342-3345, 2011.
    [35] C. Bernuy-Lopez, W. Manalastas Jr, J. M. Lopez del Amo, A. Aguadero, F. Aguesse, and J. A. Kilner, "Atmosphere controlled processing of Ga-substituted garnets for high Li-ion conductivity ceramics," Chemistry of materials, vol. 26, no. 12, pp. 3610-3617, 2014.
    [36] J. Awaka, N. Kijima, H. Hayakawa, and J. Akimoto, "Synthesis and structure analysis of tetragonal Li7La3Zr2O12 with the garnet-related type structure," Journal of solid state chemistry, vol. 182, no. 8, pp. 2046-2052, 2009.
    [37] Y. Inaguma et al., "High ionic conductivity in lithium lanthanum titanate," Solid State Communications, vol. 86, no. 10, pp. 689-693, 1993.
    [38] Y. Inaguma, L. Chen, M. Itoh, and T. Nakamura, "Candidate compounds with perovskite structure for high lithium ionic conductivity," Solid State Ionics, vol. 70, pp. 196-202, 1994.
    [39] A. Mei et al., "Role of amorphous boundary layer in enhancing ionic conductivity of lithium–lanthanum–titanate electrolyte," Electrochimica Acta, vol. 55, no. 8, pp. 2958-2963, 2010.
    [40] V. Thangadurai, A. Shukla, and J. Gopalakrishnan, "LiSr1. 65 (large hallow square bullet) 0.35 B1. 3 B'1.7 O9 (B= Ti, Zr; B'= Nb, Ta): New Lithium Ion Conductors Based on the Perovskite Structure," Chemistry of Materials, vol. 11, no. 3, pp. 835-839, 1999.
    [41] C. Chen, S. Xie, E. Sperling, A. Yang, G. Henriksen, and K. Amine, "Stable lithium-ion conducting perovskite lithium–strontium–tantalum–zirconium–oxide system," Solid State Ionics, vol. 167, no. 3-4, pp. 263-272, 2004.
    [42] V. Thangadurai, S. Adams, and W. Weppner, "Crystal structure revision and identification of Li+-ion migration pathways in the garnet-like Li5La3M2O12 (M= Nb, Ta) oxides," Chemistry of materials, vol. 16, no. 16, pp. 2998-3006, 2004.
    [43] H.-P. Hong, "Crystal structure and ionic conductivity of Li14Zn (GeO4) 4 and other new Li+ superionic conductors," Materials Research Bulletin, vol. 13, no. 2, pp. 117-124, 1978.
    [44] J. K. a. A. R. West, "New Li+ ion conductors in the system, Li4GeO4-Li3VO4," Materials Research Bulletin.
    [45] Y. W. Hu, I. Raistrick, and R. A. Huggins, "Ionic conductivity of lithium orthosilicate—lithium phosphate solid solutions," Journal of the Electrochemical society, vol. 124, no. 8, pp. 1240-1242, 1977.
    [46] S. Song, J. Lu, F. Zheng, H. M. Duong, and L. Lu, "A facile strategy to achieve high conduction and excellent chemical stability of lithium solid electrolytes," RSC Advances, 10.1039/C4RA11287C vol. 5, no. 9, pp. 6588-6594, 2015.
    [47] N. Kamaya et al., "A lithium superionic conductor," Nature materials, vol. 10, no. 9, p. 682, 2011.
    [48] L. Fan, S. Wei, S. Li, Q. Li, and Y. Lu, "Recent progress of the solid‐state electrolytes for high‐energy metal‐based batteries," Advanced Energy Materials, vol. 8, no. 11, p. 1702657, 2018.
    [49] L. Chen, Y. Li, S.-P. Li, L.-Z. Fan, C.-W. Nan, and J. B. Goodenough, "PEO/garnet composite electrolytes for solid-state lithium batteries: From “ceramic-in-polymer” to “polymer-in-ceramic”," Nano Energy, vol. 46, pp. 176-184, 2018.
    [50] H. Huo, Y. Chen, J. Luo, X. Yang, X. Guo, and X. Sun, "Rational Design of Hierarchical “Ceramic‐in‐Polymer” and “Polymer‐in‐Ceramic” Electrolytes for Dendrite‐Free Solid‐State Batteries," Advanced Energy Materials, p. 1804004, 2019.
    [51] C. Wang et al., "Suppression of lithium dendrite formation by using LAGP-PEO (LiTFSI) composite solid electrolyte and lithium metal anode modified by PEO (LiTFSI) in all-solid-state lithium batteries," ACS applied materials & interfaces, vol. 9, no. 15, pp. 13694-13702, 2017.
    [52] D. Li, L. Chen, T. Wang, and L.-Z. Fan, "3D fiber-network-reinforced bicontinuous composite solid electrolyte for dendrite-free lithium metal batteries," ACS applied materials & interfaces, vol. 10, no. 8, pp. 7069-7078, 2018.
    [53] W. Zha, F. Chen, D. Yang, Q. Shen, and L. Zhang, "High-performance Li6. 4La3Zr1. 4Ta0. 6O12/Poly (ethylene oxide)/Succinonitrile composite electrolyte for solid-state lithium batteries," Journal of Power Sources, vol. 397, pp. 87-94, 2018.
    [54] W. Zhou, S. Wang, Y. Li, S. Xin, A. Manthiram, and J. B. Goodenough, "Plating a dendrite-free lithium anode with a polymer/ceramic/polymer sandwich electrolyte," Journal of the American Chemical Society, vol. 138, no. 30, pp. 9385-9388, 2016.
    [55] B. Liu et al., "Garnet solid electrolyte protected Li-metal batteries," ACS applied materials & interfaces, vol. 9, no. 22, pp. 18809-18815, 2017.
    [56] 秦家偉, "含親水基共聚高分子之合成鑑定與其於鋰電池正極黏著劑之應用," 2018.
    [57] Bruker, "Quantitative Mechanical Property Mapping at the Nanoscale with PeakForce QNM."
    [58] T. Yang, J. Zheng, Q. Cheng, Y.-Y. Hu, and C. K. Chan, "Composite polymer electrolytes with Li7La3Zr2O12 garnet-type nanowires as ceramic fillers: mechanism of conductivity enhancement and role of doping and morphology," ACS applied materials & interfaces, vol. 9, no. 26, pp. 21773-21780, 2017.
    [59] J. Wolfenstine, J. L. Allen, J. Sakamoto, D. J. Siegel, and H. Choe, "Mechanical behavior of Li-ion-conducting crystalline oxide-based solid electrolytes: A brief review," Ionics, vol. 24, no. 5, pp. 1271-1276, 2018.
    [60] Z. Wan et al., "Low Resistance–Integrated All‐Solid‐State Battery Achieved by Li7La3Zr2O12 Nanowire Upgrading Polyethylene Oxide (PEO) Composite Electrolyte and PEO Cathode Binder," Advanced Functional Materials, vol. 29, no. 1, p. 1805301, 2019.
    [61] H. Li et al., "A sandwich structure polymer/polymer-ceramics/polymer gel electrolytes for the safe, stable cycling of lithium metal batteries," Journal of membrane science, vol. 555, pp. 169-176, 2018.
    [62] Y. Tominaga, K. Yamazaki, and V. Nanthana, "Effect of anions on lithium ion conduction in poly (ethylene carbonate)-based polymer electrolytes," Journal of the Electrochemical Society, vol. 162, no. 2, pp. A3133-A3136, 2015.
    [63] K. K. Fu et al., "Toward garnet electrolyte–based Li metal batteries: An ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface," Science Advances, vol. 3, no. 4, p. e1601659, 2017.
    [64] Z. He, L. Chen, B. Zhang, Y. Liu, and L.-Z. Fan, "Flexible poly (ethylene carbonate)/garnet composite solid electrolyte reinforced by poly (vinylidene fluoride-hexafluoropropylene) for lithium metal batteries," Journal of Power Sources, vol. 392, pp. 232-238, 2018.

    無法下載圖示 校內:2024-08-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE