簡易檢索 / 詳目顯示

研究生: 宋旻鴻
Sung, Min-Hung
論文名稱: 淺層農業用水對地層下陷影響之研究:以濁水溪沖積扇為例
Impacts of agricultural groundwater use in shallow aquifer on land subsidence: a case study in Chou-shui River alluvial fan
指導教授: 徐國錦
Hsu, Kuo-Chin
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 91
中文關鍵詞: 地層下陷深部地層下陷地下水使用類別農業抽水
外文關鍵詞: land subsidence, deformation in the deep aquifer, groundwater users, agricultural pumping
相關次數: 點閱:152下載:19
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 地層下陷乃台灣水資源和土地資源管理不善所造成的結果。近年來,濁水溪沖積扇之深部地層有持續下陷地情況並在部分地區達到總沉陷量的50%。而農業抽水被認為是彰化縣和雲林縣主要的地下水使用類別。然而,農業用水從淺層含水層抽水的取水型態所引起深部地層下陷的問題仍然存在爭議。我們首先描述濁水溪沖積扇的水文地質特性,以確定含水層系統的連通性。接著使用數值軟體COMSOL對地下水流和土壤壓密進行數值模擬。結果顯示,從淺層含水層取水之農業抽水行為確實對不同深度含水層的地下水位造成影響。淺層農業抽水與含水層一、二、三和四之地下水位的呈負相關,平均相關係數分別為-0.404,-0.380,-0.303和-0.271。結果亦顯示,淺層農業抽水與淺層及深層含水層下陷量的平均相關係數分別為0.458和0.322。結果表明淺層抽水不僅會影響含水層系統的淺層含水層,亦會對深部含水層造成影響。數值模擬結果顯示,當淺層含水層與深層含水層的抽水量為1:1、 2:1、 3:1和3.65:1(經建會,2011)時,淺層農業抽水造成深層含水層下陷量占整體下陷量比例分別為25.9%,41.1%,51.2%和56.1%。雖然從淺層含水層中抽水不能直接抽取深層含水層所含之地下水,但結果顯示,地下水會通過滲漏的含水層棲移至淺層含水層並導致深層含水層孔隙水壓下降,進而產生下陷。

    Land subsidence is the result caused by the inappropriate management of water and land resources in Taiwan. Continuous compaction of deep stratum in Chou-shui River alluvial fan has reached up to 50% of the total subsidence. Agricultural pumping has been recognized as the major groundwater use in Changhua and Yunlin counties. However, the question on whether the agricultural pumping from the shallow aquifer to cause the compaction of deep stratum is still under debate. We first characterize the hydrogeology to identify the connectivity of aquifers. Then numerical modeling is performed for the groundwater flow and soil compaction using COMSOL. The result shows that agricultural pumping in shallow aquifer did affect the groundwater level of aquifer at different depth. Agricultural groundwater pumping and groundwater level are negatively correlated with average coefficient in F1, F2, F3 and F4 are -0.404, -0.380, -0.303 and -0.271, respectively. The results also show that the average of correlation coefficient of agricultural groundwater pumping and land subsidence at (a) shallow, (b) deep aquifer are 0.458 and 0.322, respectively. It indicates that the shallow pumping will influence the aquifer system not only at shallow aquifer but also at that of deeper aquifer. The result of numerical modelling shows that when the ratio of discharge of shallow aquifer to deep aquifer is 1:1, 2:1, 3:1 and 3.65:1 (CEPD, 2011), the proportions of deformation in the deep aquifer due to agricultural pumping at shallow aquifer are 25.9%, 41.1%, 51.2% and 56.1%, respectively. Although pumping in shallow aquifer does not directly pump deep aquifer, water moves through leaky aquitard to reach upper aquifer and causes the compaction of the deep aquifer.

    Abstract I 摘要 III 誌謝 IV Contents V List of Tables VIII List of Figures IX Notation XII Chapter 1 Introduction 1 Chapter 2 Lost underground space due to land subsidence 13 2.1 Methodology 13 2.2 Subsidence in Yunlin county 15 Chapter 3 Impact of groundwater pumping on variation of groundwater level and subsidence 21 3.1 Processing of the pumping data 22 3.1.1 Pumping data 22 3.1.2 The thickness of aquifer 22 3.1.3 Distribution of the pumping wells 23 3.2 Analysis of correlation between groundwater pumping and variation of groundwater level 25 3.3 Groundwater pumping and land subsidence 37 3.4 Summary of the result 42 Chapter 4 Aquifer connectivity 43 4.1 Methodology 44 4.2 Correlation analysis 46 4.3 Vertical connectivity of subsurface system 54 Chapter 5 Consolidation theory 58 5.1 Constitutive equation 58 5.1.1 Elastic model 58 5.1.2 Plastic model 59 5.1.3 Elasto-plastic (EP) model 60 5.2 Poremechanics model 63 5.2.1 Coupled theory of fluid flow and poroelastic stress 63 5.2.2 Coupled theory of fluid flow and poroelastic-plastic stress 65 Chapter 6 Numerical modelling of the deep consolidation due to pumping of different users 67 6.1 Conceptual hydrogeological model 67 6.1.1 Bozi station 68 6.1.2 Tunggung station 69 6.1.3 Yuanchang station 69 6.1.4 Hunglun station 69 6.1.5 Tienyang station 69 6.1.6 Tuku station 70 6.1.7 Fangcao station 70 6.1.8 Huwei station 70 6.2 Numerical Simulation 74 6.2.1 Boundary condition 74 6.2.2 Hydrogeological parameters 75 6.2.3 Soil mechanical parameters 76 6.3 Scenarios of modeling 76 6.3.1 Scenario 1 77 6.3.2 Scenario 2 78 6.3.3 Scenario 3 79 6.3.4 Result of current pumping rate 80 6.4 Spatial distribution of cumulative subsidence 82 Chapter 7 Conclusions and suggestions 85 7.1 Conclusions 85 7.2 Suggestions 86 Reference 87

    Amin, A. A. and Bankher K. A., 1997. Karst hazard assessment of eastern Saudi Arabia. Nature Hazards, 15, 21-30.
    Bear, J. and Corapcioglu, M. Y., 1981, Mathematical model for regional land subsidence due to pumping, I. Integrated aquifer subsidence equations based on vertical displacement only. Water Resource Research, 17, 937–946.
    Biot, M. A., 1941. General theory of three-dimensional consolidation. Journal of Applied Physics, 12, 155-164.
    Biot, M. A., 1955. Theory of elasticity and consolidation for a porous anisotropic solid, Journal of applied physics, 26, 182-182.
    Chai, J. C., Shen, S. L., Zhu, H. H. and Zhang, X. L., 2004. Land subsidence due to groundwater drawdown in Shanghai. Géotechnique 54, 2, 143–147.
    Council for Economic Planning and Development, Executive Yuan, 2011. Specific solutions and action plans for stratum subsidence in Yunlin and Changhua area. 18-19.
    Fetter, C. W, 2001. Applied Hydrogeology, 4th ed.; Prentice Hall: Upper Saddle River, NJ, USA.
    Galloway, D. L., Erkens, G., Kuniansky, E. L., and Rowland, J. C., 2016. Preface: Land subsidence processes. Hydrogeology Journal, 24(3), 547–550.
    Gambolati, G., 1974. Second order theory of flow in three dimensional deforming media. Water Resource Research, 10, 1217–1228.
    Gambolati, G., Gatto P. and Freeze R. A., 1991. Mathematical simulation of the subsidence of Ravenna. Water Resource Research, 27(11), 2899-2918.
    Gambolati, G., 1992, Comment on ‘‘Coupling versus uncoupling in soil consolidation’’ by R. W. Lewis, B. A. Schrefler and L. Simoni, Int. J. Numer. Anal. Methods Geomech., 16, 833–837.
    Gambolati, G., Teatini, P., & Ferronato, M., 2005. Anthropogenic Land Subsidence. Encyclopedia of Hydrological Sciences.
    Gambolati, G., Teatini, P., 2015. Geomechanics of subsurface water withdrawal and injection. Water Resource Research, 51, 3922–3955.
    Gong, H., Pan, Y., Zheng, L., Li, X., Zhu, L. and Zhang, C., 2018 Long-term groundwater storage changes and land subsidence development in the North China Plain (1971–2015). Hydrogeology Journal, 26, 1417-1427.
    Hsu, S. K., 1998. Plan for a ground water monitoring network in Taiwan. Hydrogeology Journal, 6, 405–415.
    Hung, W. C., Hwang C. W., Chang C. P., Yen J. Y., Liu C. H. and Yang W. H., 2010. Monitoring severe subsidence in Taiwan by multi-sensors: Yunlin, the south Chou-shui River Alluvial Fan. Earth Science Geology 59, 1535-1548.
    Kim, J. M., 2000. Generalized poroelastic analytical solutions for pore water pressure change and land subsidence due to surface loading. Geoscience Journal, 4(2), 95-104.
    Kim, J. M., 2005. Three-dimensional numerical simulation of fully coupled groundwater flow and land deformation in unsaturated true anisotropic aquifers due to groundwater pumping. Water Resources Research, 41, W01003.
    Kim, J. M., Parizek, R. R., Elsworth, D., 1997. Evaluation of fully-coupled strata deformation and groundwater flow in response to longwall mining. International Journal of Rock Mechanics and Mining Sciences, 34(8), 1187-1199.
    Lin, C. W., 2018. Estimation of Irrigation Groundwater Usage in Changhua-Yunlin Area. Unpublished manuscript, Department of Hydraulic and Ocean Engineering, National Cheng Kung University, Tainan, Taiwan.
    Lubliner, J., 2008. Plasticity theory. Dover Publications, Mineola, NY.
    Mahmoudpour, M., Khamehchiyan, M., Nikedul, M. R. and Ghassemi, M. R., 2016. Numerical simulation and prediction of regional land subsidence caused by groundwater exploitation in the southwest plain of Tehran, Iran. Engineering Geology, 201, 6-28.
    Neuman, S. P., Preller C. and Narasimhan T. N., 1982. Adaptive explicit-implicit quasi three-dimensional finite element model of flow and subsidence in multiaquifer system. Water Resource Research, 18, 1151-1561.
    Pratt, W.E. and Johnson, D.W., 1926. Local Subsidence of the Goose Creek Oil Field. Journal of Geology, 34, 577-590.
    Sadd, M. H., 2004. Elasticity: Theory, Applications, and Numerics, Academic press.
    Shen, S. L., Xu Y. S. and Hong Z. S., 2006. Estimation of land subsidence based on groundwater flow model. Marine Georesources and Geotechnology, 24, 149-167.
    Shi, X. Q., Wu J. C., Ye S. J., Zhang Y., Xue Y Q., Wei Z. X., Li. Q. F. and Yu J., 2008. Regional land subsidence simulation in Su-Xi-Chang area and shanghai City, China. Engineering Geology, 100, 27-42.
    Shirzaei, M. and Bürgmann, R., 2018. Global climate change and local land subsidence exacerbate inundation risk to the San Francisco Bay Area. Science Advances, 4 (eaap9234), 3.
    Terzghi, K., 1923. Die berechnung der durchlassigkeitsziffer des tones aus dem verlauf der hydrodynamischen spannungserscheinungen. Sitzungsberichte der Akademie der Wissenschaften in Wien, Mathematisch-Naturwissenschaftliche Klasse, Abteilung IIa, 132, 125-138
    Tosi, L., Teatini, P. and Strozzi, T., 2013. Natural versus anthropogenic subsidence of Venice. Scientific Reports, 3, 403–417.
    Tosi, L., Lio, C., Teatini, P., Strozzi, T., 2018. Land subsidence in coastal environments: knowledge advance in the Venice coastland by TerraSAR-X PSI. Remote Sensing, 10(8), 1191.
    Tsai, T. L., 2009. Viscosity effect on consolidation of poroelastic soil due to groundwater table depression. Environmental Geology, 57, 1055-1064.
    Tsai, T. L., 2015. A coupled one-dimensional viscoelastic-plastic model for aquitard consolidation caused by hydraulic head variations in aquifers. Hydrological processes, 29, 4779-4793.
    Tsai, M. S., & Hsu, K. C., 2018. Identifying poromechanism and spatially varying parameters of aquifer compaction in Chou-shui River alluvial fan, Taiwan. Engineering Geology, 245, 20-32.
    Verruijt, A., 1969, Elastic storage of aquifers. In: De Wiest, R.J.M. (ed.), Flow through Porous Media. Academic Press, New York, 331–376.
    Water Resources Agency, 2018. Changhua and Yunlin subsidence monitoring and analysis interim report 2018 year (in Chinese), Report of Water Resources Agency, Taipei.
    Wu, B., R. Doble, C. Turnadge, and D. Mallants, 2018. Bore and well induced inter-aquifer connectivity: a review of literature on failure mechanisms and conceptualisation of hydrocarbon reservoir-aquifer failure pathways. Prepared by the Commonwealth Scientific and Industrial Research Organisation CSIRO, Canberra.Rep.
    Wu, J. H., Shi X. Q., Ye S. J., Xue Y. Q., Zhang Y., Wei Z. X. and Z. F., 2010. Numerical simulation of viscoelastoplastic land subsidence due to groundwater overdrafting in Shanghai, China. Journal of hydrologic engineering. 15, 223-236.
    Xue, Y. Q., Wu J. and Zhang Y., 2005. Land subsidence in China. Engineering Geology, 48, 713-720.
    Xue, Y. Q., Wu J. C., Zhang Z. Y., Shi X. Q., Wei Z. X., Li Q. F. and Yu J., 2008. Simulation of regional land subsidence in the southern Yangtze Delta. Science in China Series D: Earth Sciences, 51, 808-825.
    Ye, S. J., Xue Y. Q., Wu J. C. and Li Q. F., 2012. Modeling visco-elastic-plastic deformation of soil with modified Merchant model. Environ Earth., 66, 1497-1504.
    Zhang, Y., Xue Y. Q., Wu J. C., Ye S. J., Wei Z. X., Li Q. F. and Yu J., 2007. Characteristics of aquifer system deformation in the southern Yangtse Delta, China. Engineering Geology. 90, 160-173.
    Zhang, M., and T.J. Burbey. 2016. Inverse modeling using PSInSAR data for improved land subsidence simulation in Las Vegas Valley, Nevada. Hydrologic Processes 30, no. 24: 4494–4516.

    下載圖示 校內:2022-06-28公開
    校外:2022-06-28公開
    QR CODE