| 研究生: |
蕭清倫 Xiao, Ching-Lun |
|---|---|
| 論文名稱: |
基於光學干涉技術用於快速壓電片控制於精準光學色散調控 Fast Piezo Bender Control for Precise Optical Dispersion Manipulation Based on Optical Interferometry |
| 指導教授: |
王俊志
Wang, Jinz Jiunn-jyh |
| 共同指導教授: |
張家源
Chang, Chia-Yuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 74 |
| 中文關鍵詞: | 側向取樣干涉術 、壓電材料 、二階群色散 、雷射脈衝壓縮 、干涉式自相關 |
| 外文關鍵詞: | laterally sampled interferometry, piezoelectric bender, group delay dispersion, pulse compression, interferometric autocorrelation |
| 相關次數: | 點閱:68 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
壓電材料由於其高精準度以及響應快速的特性,使其在各領域間廣泛的應用。然而由於其材料磁滯(Hysteresis)以及潛變(Creep)的特性,使其在控制上通常需要有額外的感測器給予回授訊號。在這之中干涉儀是一種精準度相對高的感測器,本篇研究使用側向取樣(Laterally Sampled)的方式讀取干涉條紋的特徵,透過最小平方擬合求得壓電片變形的曲率。上述方法相較於其他表面形貌方法,因為忽略目標粗糙度的資訊,所以省略大量的計算時間。因此比較適合做為壓電片變形回授的感測方法,再使用PI控制器對其進行回授控制,由於PI控制器在存在建模誤差或是外在負載的情況下依舊可以擁有顯著的控制效果。最後,本研究將此伺服控制的壓電致動系統應用於脈衝壓縮器,建立基於干涉的光學色散調控系統。此種雷射脈衝壓縮器的優點在於大範圍的色散調控以及響應速度較快,然而由於壓電磁滯的特性導致其相對來說更難以進行精確的控制。因此本篇研究希望透過干涉回授解決壓電的控制問題,建立大範圍的光學色散調控系統。
It’s difficult to directly measure the curvature of a piezoelectric bender, most measurement method use the displacement of certain point on the bender to calculate the curvature. So, this thesis proposed modified laterally sampled laser interferometry (MLSLI), which is based on Meng’s research, to measure curvature of piezo bender with interferometry. The advantages of the proposed method are that it can do the direct measurement and aware that the piezoelectric bender is not deformed as expected theoretically and faster than other surface measurement method. Then, this thesis control piezoelectric bender with MLSLI feedback to manipulate optical dispersion. And, compared to other optical dispersion manipulation method, the system this thesis constructed has some advantage as shown below: First, piezoelectric bender has larger displacement than normal deformable mirror, so it can have larger optical dispersion manipulation range. Second, because of property of piezo actuator the system has high response speed. Last, with MLSLI feedback, the system can have direct measurement of curvature of piezoelectric bender and estimate whether the shape of piezoelectric bender is parabolic surface. Although, piezo actuator has many advantages. Because of hysteresis and creep effect, it’s more difficult to deform bender to exactly the desired curvature. But, with the curvature information analyzed by MLSLI as feedback signal, the closed loop system can drive the piezoelectric bender to converge to the desired curvature providing the dispersion compensation.
1. A. Conrado, L. Mecchi, G. Nader, E. Carlos, N. Silva, and J. Adamowski, "Development and Characterization of a Unimorph-type Piezoelectric Actuator Applied to a Michelson Interferometer," (2004).
2. J. R. Afonso Fernandes, F. Sa, J. Santos, and E. Joanni, "Optical Fiber Interferometer for Measuring the d33 Coefficient of Piezoelectric Thin Films with Compensation of Substrate Bending," Review of Scientific Instruments, 2073-2078 (2002).
3. L. Colchero, J. Colchero, J. Gómez Herrero, E. Prieto, A. Baró, and W. H. Huang, "Comparison of strain gage and interferometric detection for measurement and control of piezoelectric actuators," Materials Characterization 48, 133-140 (2002).
4. J. H. Kim, K. Shih-Kang, and M. Chia-Hsiang, "An ultraprecision six-axis visual servo-control system," IEEE Transactions on Robotics 21, 985-993 (2005).
5. Z. Lei, X. Liu, L. Chen, W. Lu, and S. Chang, "A novel surface recovery algorithm in white light interferometry," Measurement 80, 1-11 (2016).
6. P. De Groot, "Phase Shifting Interferometry," (2011), pp. 167-186.
7. P. Tamburrano, F. Sciatti, A. Plummer, E. Distaso, P. De Palma, and R. Amirante, A Review of Novel Architectures of Servovalves Driven by Piezo-Electric Actuators (2021).
8. H. Song, G. Vdovin, R. Fraanje, G. Schitter, and M. Verhaegen, "Extracting hysteresis from nonlinear measurement of wavefront-sensorless adaptive optics system," Opt. Lett. 34, 61-63 (2009).
9. J. D. Kafka and T. Baer, "Prism-pair dispersive delay lines in optical pulse compression," Opt. Lett. 12, 401-403 (1987).
10. E. Treacy, "Optical pulse compression with diffraction gratings," IEEE Journal of Quantum Electronics 5, 454-458 (1969).
11. A. Straub, M. Durst, and C. Xu, "High speed multiphoton axial scanning through an optical fiber in a remotely scanned temporal focusing setup," Biomedical optics express 2, 80-88 (2010).
12. A. Straub, M. E. Durst, and C. Xu, "High speed multiphoton axial scanning through an optical fiber in a remotely scanned temporal focusing setup," Biomedical optics express 2, 80-88 (2011).
13. A. Dubois, L. Vabre, A.-C. Boccara, and E. Beaurepaire, "High-resolution full-field optical coherence tomography with a Linnik microscope," Applied Optics 41, 805-812 (2002).
14. Y.-Y. Cheng and J. C. Wyant, "Multiple-wavelength phase-shifting interferometry," Applied Optics 24, 804-807 (1985).
15. J. Wyant, White light interferometry, AeroSense 2002 (SPIE, 2002), Vol. 4737.
16. Y. Wang, F. Xie, S. Ma, and L. Dong, "Review of surface profile measurement techniques based on optical interferometry," Optics and Lasers in Engineering 93, 164-170 (2017).
17. S. Yang and G. Zhang, "A review of interferometry for geometric measurement," Measurement Science and Technology 29, 102001 (2018).
18. H. J. Tiziani and G. Pedrini, "From speckle pattern photography to digital holographic interferometry [Invited]," Applied Optics 52, 30-44 (2013).
19. U. Schnars and W. P. O. Jüptner, "Digital recording and reconstruction of holograms in hologram interferometry and shearography," Applied Optics 33, 4373-4377 (1994).
20. S. Devasia, E. Eleftheriou, and S. O. R. Moheimani, "A Survey of Control Issues in Nanopositioning," IEEE Transactions on Control Systems Technology 15, 802-823 (2007).
21. P. Cheng and C. H. Menq, "Real-time continuous image registration enabling ultraprecise 2-D motion tracking," IEEE Trans Image Process 22, 2081-2090 (2013).
22. G. Clayton, S. Tien, K. Leang, Q. Zou, and S. Devasia, "A Review of Feedforward Control Approaches in Nanopositioning for High-Speed SPM," Journal of Dynamic Systems Measurement and Control-transactions of The Asme - J DYN SYST MEAS CONTR 131(2009).
23. D. E. Spence, P. N. Kean, and W. Sibbett, "60-fsec pulse generation from a self-mode-locked Ti:sapphire laser," Opt. Lett. 16, 42-44 (1991).
24. R. L. Fork, O. E. Martinez, and J. P. Gordon, "Negative dispersion using pairs of prisms," Opt. Lett. 9, 150-152 (1984).
25. S. Akturk, X. Gu, M. Kimmel, and R. Trebino, "Extremely simple single-prism ultrashort-pulse compressor," Opt. Express 14, 10101-10108 (2006).
26. O. Martinez, "3000 times grating compressor with positive group velocity dispersion: Application to fiber compensation in 1.3-1.6 µm region," IEEE Journal of Quantum Electronics 23, 59-64 (1987).
27. C. Evans and E. Mazur, "Nanophotonics: Linear and Nonlinear Optics at the Nanoscale," (2013), pp. 119-176.
28. D. J. Kane and R. Trebino, "Characterization of arbitrary femtosecond pulses using frequency-resolved optical gating," IEEE Journal of Quantum Electronics 29, 571-579 (1993).
29. C. Iaconis and I. A. Walmsley, "Spectral phase interferometry for direct electric-field reconstruction of ultrashort optical pulses," Opt. Lett. 23, 792-794 (1998).
30. A. Moulet, S. Grabielle, C. Cornaggia, N. Forget, and T. Oksenhendler, "Single-shot, high-dynamic-range measurement of sub-15 fs pulses by self-referenced spectral interferometry," Opt. Lett. 35, 3856-3858 (2010).
31. B. M. van Oerle and G. J. Ernst, "Autocorrelation measurements of bursts of picosecond pulses," Applied Optics 35, 5177-5179 (1996).
32. R. Trebino, "The Measurement of Ultrashort Laser Pulses," in Frontiers in Optics, OSA Technical Digest Series (Optica Publishing Group, 2005), SC155.
33. J. M. Schmitt, "Optical coherence tomography (OCT): a review," IEEE Journal of selected topics in quantum electronics 5, 1205-1215 (1999).
34. P. J. Caber, "Interferometric profiler for rough surfaces," Applied Optics 32, 3438-3441 (1993).
35. L. Xin, Z. Yang, J. Dou, Z. Liu, Z. Gao, and X. Zhang, "Hilbert transform-based envelope substitution method for non-uniform sampling signal correction in white-light interferometry," OSA Continuum 3(2020).
36. P. Cheng and C.-H. Menq, "Visual Tracking of Six-Axis Motion Rendering Ultraprecise Visual Servoing of Microscopic Objects," IEEE/ASME Transactions on Mechatronics 23, 1564-1572 (2018).
37. T. Ikehashi, E. Ogawa, H. Yamazaki, and T. Ohguro, "Lithographical bending control method for a piezoelectric actuator," International Journal of Microwave and Wireless Technologies 1, 37-42 (2009).
38. P. Zhao, W. Su, R. Wang, X. Xu, and F. Zhang, "Properties of thin silver films with different thickness," Physica E: Low-dimensional Systems and Nanostructures 41, 387-390 (2009).
39. "PL112 – PL140 PICMA Bender", retrieved 06/13, 2022, https://www.physikinstrumente.com/en/products/piezoelectric-transducers-actuators/pl112-pl140-picma-bender-103000/.
40. R. Loughridge and D. Abramovitch, A tutorial on laser interferometry for precision measurements (2013), pp. 3686-3703.
41. "Displacement Modes of Piezoelectric Actuators", retrieved 11/08, 2021,https://www.piceramic.com/en/expertise/piezo-technology/properties-piezo-actuators/displacement-modes/.
42. G. Klaasse, R. Puers, and H. A. C. Tilmans, "Piezoelectric Versus Electrostatic Actuation for a Capacitive RF-MEMS Switch," (2003).
43. H. Zhang and X. Xue, "The research progress on corrosion and protection of silver layer," SN Applied Sciences 1, 464 (2019).
44. "優力膠・橡膠特性" (Misumi), retrieved 06/27, 2022, https://tw.misumi-ec.com/pdf/fa/2019/p2089_p2091.pdf.
45. "核心設施中心 微奈米科技組 e化系統", retrieved 06/14, 2022, http://cfc2021.cfc.ncku.edu.tw/cmnst_e_system/index.php/facility_list/list