簡易檢索 / 詳目顯示

研究生: 蔡德穎
Tsai, Te-Ying
論文名稱: 雷射蝕刻之旋流噴嘴流場研究
Study of the flow fields of the swirling nozzle in laser ablation
指導教授: 林震銘
Lin, Jehn-Ming
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 88
中文關鍵詞: 雷射蝕刻噴嘴設計旋流場
外文關鍵詞: Nozzle design, Swirling flows, Laser ablation
相關次數: 點閱:88下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文研究在低速氣流條件下使用旋流噴嘴,進行雷射材料蝕刻並分析加工後表面品質。針對旋流衝擊平板,以數值分析及實驗方法進行分析。在數值分析方面,建立物理模型及假設,導入連續、動量、紊流方程式及顆粒運動方程式,以FLUENT軟體進行計算,討論不同切線入口速度旋流衝擊平板所形成的壓力分佈、速度場及顆粒運動路徑。在實驗方面分為旋流噴嘴流場觀測與平板壓力量測,由壓力量測的結果確認工件表面的壓力分佈情形,並比較數值計算與實驗結果。最後進行雷射蝕刻加工實驗,利用顯微放大並擷取加工表面影像,從得到的照片及表面粗度量測加以比較並說明結果。本文可作為旋流噴嘴應用於雷射加工之基礎研究。

    The effects of the gas streams on removing the plume in the laser ablation were studied experimentally and numerically in this thesis.

    In the numerical analysis, the swirling flow was impinging to a substrate during the laser ablation. Using the computational fluid dynamics (CFD) software, FLUENT, the continuity, momentum, energy and turbulent, particle momentum equations was solved for the swirling flow problem. The numerical results show the pressure fields of swirling flow impinging on the substrate, field of velocity and path of particle tracing at various tangent velocities. The flow characteristics were confirmed with the flow visualization in the experiments. The pressure fields of the swirling flow on the substrate was also measured and calculated. The results show that the distribution of the gas velocity on the substrate was significantly affected by swirl strength, which was used to remove the plume in the laser ablation. Finally the surface roughnesses of the grooves were measured. It is a fundamental study for laser ablation process with swirling nozzle in the future.

    中文摘要……………………………………………………………… Ⅰ 英文摘要……………………………………………………………… Ⅱ 致謝…………………………………………………………………… Ⅲ 目錄…………………………………………………………………… Ⅳ 表目錄………………………………………………………………… Ⅶ 圖目錄………………………………………………………………… Ⅷ 符號說明……………………………………………………………… ⅩⅡ 第一章 緒論………………………………………………………… 1 1-1 研究背景及目的………………………………………………… 1 1-2 文獻回顧………………………………………………………… 4 1-3 本文架構………………………………………………………… 10 第二章 數值分析理論……………………………………………… 11 2-1 旋流噴流概述…………………………………………………… 11 2-1.1 旋流數定義…………………………………………………… 11 2-1.2 速度場方程式………………………………………………… 13 2-2 數值計算理論方程式…………………………………………… 19 2-2.1 基本假設……………………………………………………… 19 2-2.2 流場方程式…………………………………………………… 19 2-3 顆粒飛行軌跡方程式…………………………………………… 22 2-4 Fluent數值計算軟體及數值方法……………………………… 24 2-5 Fluent數值計算軟體驗證……………………………………… 27 第三章 數值分析結果……………………………………………… 32 3-1 流場分析………………………………………………………… 32 3-1.1 旋流噴嘴……………………………………………………… 32 3-1.2 FLUENT幾何範圍設定………………………………………… 34 3-1.3 切線入口速度設定…………………………………………… 35 3-1.4 格點建立及測試……………………………………………… 37 3-2 平板效應………………………………………………………… 40 3-2.1 邊界條件設定………………………………………………… 40 3-2.2 計算結果……………………………………………………… 40 3-2.2.1 中央迴流區………………………………………………… 40 3-2.2.2 平板壓力分佈……………………………………………… 45 3-2.2.3 顆粒運動路徑……………………………………………… 47 3-3 平板孔效應……………………………………………………… 54 3-3.1 邊界條件設定………………………………………… 54 3-3.2 計算結果……………………………………………………… 55 3-3.2.1 中央迴流區………………………………………………… 55 3-3.2.2 平板壓力分佈……………………………………………… 58 3-3.2.3 顆粒運動路徑……………………………………………… 59 3-4 結果與討論……………………………………………………… 64 第四章 流場實驗…………………………………………………… 66 4-1 旋流衝擊平板之壓力分佈量測………………………………… 66 4-1.1壓力量測實驗配置及步驟…………………………………… 66 4-1.2實驗結果……………………………………………………… 68 4-2 旋流流場觀測…………………………………………………… 70 4-2.1 實驗方法……………………………………………………… 70 4-2.2 流場觀測實驗配置及步驟…………………………………… 71 4-2.3 實驗結果……………………………………………………… 72 4-3 雷射蝕刻加工實驗……………………………………………… 75 4-3.1實驗配置及步驟…………………………………………… 75 4-3.2實驗結果…………………………………………………… 77 4-4 結果與討論……………………………………………………… 81 第五章 綜合討論與建議…………………………………………… 82 5-1 綜合討論………………………………………………………… 82 5-2 相關建議及未來發展…………………………………………… 83 參考文獻……………………………………………………………… 85 自述…………………………………………………………………… 88

    [1]Chryssolouris, G, Laser Machining-Theory and Practice, Springer-Verlag New
    York, Inc., 1991.
    [2]Beer J. M. and Chigier N. A., Combustion Aerodynamics, Robert E. Krieger
    Publishing, Inc., 1972.
    [3]Gupta A. K., Lilley D. G. and Syred N., Swirl Flows, Abacus Press, 1984.
    [4]陳弘仁, 漸擴管內之旋進流熱傳分析, 國立成功大學機械工程研究所碩士論文, 民國84年
    [5]Lee D. H., Won S. Y., Kim Y. T. and Chung Y. S., Turbulent heat transfer from
    a flat surface to a swirling round impinging jet, International Journal of
    Heat and Mass Transfer, Vol. 45, pp. 223-227, 2002.
    [6]Chang F. and Dhir V. K., Mechanisms of heat transfer enhancement and slow
    decay of swirl in tubes using tangential injection, International Journal of
    Heat and Fluid Flow, Vol. 16, No. 2, pp. 78-87, 1995.
    [7]Wang A. B. and Wang H. J., Experimental Investigations of Inlet-effects on the
    Near-field of Laminar Swirling Flow, The Chinese Journal of Mechanics, Vol.
    13, No. 2, pp. 185-195, 1997.
    [8]Li H. and Tomita Y., Characteristics of Swirling Flow in a Circular Pipe,
    Journal of Fluids Engineering, Vol. 116, pp. 370-373, 1994.
    [9]Huang L. and El-genk M. S., Heat transfer and flow visualization experiments
    of swirling, multi-channel, and conventional impinging jets, Int. J. Mass
    Transfer, Vol. 41, No. 3, pp. 583-600, 1998.
    [10]Tang X., Zhu H., Zhu G. and Li J., Plasma control in high-power CO2 laser
    welding, Laser Technology, Vol. 19, No. 5, pp. 314-316, 1995.
    [11]Duley W. W., Laser Welding, John Wiley & Sons, Inc, 1999.
    [12]Danisman K., Yilbas B. S., Gorur A., Davies R., Ciftlikli C., Yilbas Z. and
    Begh F., Study of some characteristics of the Plasma generated during a CO2
    laser beam cutting process, Optics and Laser Technology, Vol. 24, No. 1, pp.
    33-38, 1992.
    [13]Yilbas B. S. and Yilbas Z., Effects of Plasma on CO2 Laser Cutting Quality,
    Optics and Lasers in Engineerung, Vol. 9, pp. 1-12, 1988.
    [14]Leonard M., Laser Materials Processing, Marcel Dekker, Inc, 1996.
    [15]Boutinguiza M., Pou J., Lusquinos F., Quintero F., Soto R., Perez-amor M.,
    Watkins K. and Steen W. M., CO2 laser cutting of slate, Optics and Laser in
    Engineering, Vol. 37, pp.15-25, 2002.
    [16]Tuersley I. P., Hoult T. P. and Pashby I. R., Nd-YAG laser machining of SiC
    fibre/borosilicate glass composites. Part II. The effect of process
    variables, Composites Part A:Applied Science and Manufacturing(Incorporating
    Composites and Composites Manufacturing), Vol. 29, No. 8, pp. 955-964, 1998.
    [17]Yilbas B. S., Davies R., Gorur A., Yilbas Z., Begh F., Akcakoyun and Kalkat
    M., Investigation into development of liquid and formation of surface plasma
    during CO2 laser cutting process, Proc. Instn. Mech. Engrs. Part B: Journal
    of Manufacture, Vol. 206, pp. 287-298, 1992.
    [18]Tang X., Zhu H., Zhu G., Li S. and Li Z., Study on aerodynamic nozzle
    specialized for laser welding, Laser Technology, Vol. 24, No. 2, pp. 95-98,
    2000.
    [19]Christopher D., Laser welding, McGraw-Hill, Inc, 1992.
    [20]Weingartner W., Kaplan A. and Schuocker D., Laser machining with melt removal
    through suction, International Journal of Materials and Product Technology,
    Vol.11, No. 3/4, pp. 310-319, 1996.
    [21]Yokoya S., Asako Y., Hara S. and Szekely J., Control of Immersion Nozzle
    Outlet Flow Pattern through the Use of Swirling Flow in Continuous Casting,
    ISIJ International, Vol. 34, No.11, pp. 883-888, 1994.
    [22]Yokoya S., Asako Y., Hara S. and Szekely J., Numerical Study of Immersion
    Nozzle Outlet Flow Pattern with Swirling Flow in Continuous Casting, ISIJ
    International, Vol. 34, No. 11, pp. 889-895, 1994.
    [23]Yokoya S., Takagi S., Spuma H., Iguchi M., Asako Y. and Hara S., Removal of
    Inclusion through Bubble Curtain Created by Swirl Motion in Submerged Entry
    Nozzle, ISIJ International, Vol. 38, No. 10, pp. 1086-1092, 1998.
    [24]Yokoya S., Takagi S., Ogata T., Katayama S. and Matunawa A., Laser Welding in
    Vortex Flow Shielding Gas with Tornado Nozzle-Numerical Analysis of Swirling
    Motion on Welding Results, Journal of The Japan Welding Society, Vol. 19, No.
    1, pp. 37-43, 2001.
    [25]Katayama S., Yoshida D., Yokoya S. and Matunawa A., Development of Tornado
    Nozzle for Reduction in Porosity during Laser Welding of Aluminum Alloy,
    Joining and Welding Research Institute, Osaka University, 2001.
    [26]Chigier N. A. and Beer J. M., Velocity static pressure distributions in
    swirling air jet from annular and divergent nozzles, Transactions of the
    ASME, Journal of Basic Engineering, Vol. 86, pp. 788-798, 1964.
    [27]Rajaratnam N., Turbulent Jets, Elsevier Scientific Pub. Co., 1976.
    [28]楊耀洲, 漸縮管內之旋進流熱傳分析, 國立成功大學機械工程研究所碩士論文, 民國85

    [29]FLUENT 4.4 User Guide, Fluent Inc., 1997.
    [30]Peyret R. and Taylor T. D., Computational methods for fluid flow,
    Springer-Verlag, 1983.
    [31]Chigier N. A. and Chervinsky A., Experimental investigation of swirling
    vortex motion in jets, Transactions of the ASME, Journal of Applied
    Mechanics, pp. 443-451, 1967.
    [32]Ogawa A., Separation of Particles from Air and Gases : Volume II, CRC Press,
    Inc., 1987.
    [33]Hinds W. C., Aerosol Technology: Properties, Behavior, and Measurement of
    Airborne Particles, John Wiley& Sons, Inc, 1982.
    [34]Douglas B. C. and Graham K. H., Pulsed Laser Deposition of Thin Films, John
    Wiley & Sons, Inc, 1994.

    下載圖示 校內:2013-07-22公開
    校外:2013-07-22公開
    QR CODE