| 研究生: |
歐星妤 Ou, Hsing-Yu |
|---|---|
| 論文名稱: |
使用不同定價策略之網路化服務營收管理 Pricing in Revenue Management for Differentiated Service Network |
| 指導教授: |
李賢得
Lee, Shine-Der 吳植森 Wu, Chin-Sen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 資訊管理研究所 Institute of Information Management |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 66 |
| 中文關鍵詞: | 使用者效用模型 、網路計價 、差異式服務 |
| 外文關鍵詞: | Internet pricing, DiffServ, user utility |
| 相關次數: | 點閱:54 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著網際網路的成長,網際網路已成為一般大眾生活不可分的一部分,各式多媒體應用服務越趨向多樣化,使得目前網際網路所採用的盡力服務(best effort)已經不能滿足這樣多變化的需求。因此,IETF(Internet Engineering Task Force) 提出以類別為區分的差異式服務網路(differentiated service network, DiffServ)架構來提供網路品質保證。
在多元網路服務下,給予使用者多選擇的空間和生活或工作上的便利,但也衍生出許多網路頻寬管理的問題。因此學者們認為定價機制是一個適當的行為管理工具,可以用來管理網路壅塞的程度、刺激網路使用率的成長和公平地配置資源給使用者等。目前有許多學者在探討關於網路計價(Internet pricing)的議題,並針對不同的目標提出不同的定價策略,透過個體經濟中的價量關係調整使用者的行為,使網路提供者的收入最大化。在網路頻寬的服務中,學者認為影響收入最主要的因素為價錢和品質,但極少考慮到使用者對品質與價格的回應,因此本研究以網路提供者的角度,加入使用者主動回應需求,來探討當要達到預期的收入時,不同的定價策略,如何透過定價、品質與使用者需求之間相互影響的關係下,對收入產生影響並找出一個對長期營收最佳的定價機制。
本研究利用NS-2網路模擬軟體,模擬一個具有動態流量變化之差異式服務的網路環境,並使用品質-需求-價格的使用者回應機制,在不同初始負載量下,分析三種定價機制下,各期的需求變化與收入、頻寬利用率、價格變動幅度、負載量以及頻寬配置的公平性模擬結果發現壅塞性定價策略與單一制定價的平均頻寬利用率較高,而二部制定價策略,會因其對使用不足和超過頻寬的使用者均有懲罰的機制,因而使得每期價格變動最高,亦此導致使用者的需求減低。本研究實驗也發現三種定價策略下,皆有較低服務等級會搶占高服務等級的頻寬資源的情形發生,使得公平性減低。在壅塞性定價策略下,透過使用者回應的模式,網路負載量與收入會呈現凹曲線(concave curve)的關係。因此在相同網路頻寬的產能下,ISP業者若採用壅塞性定價策略,可使用超賣的商業策略行為來增加收入,以達到長期營收最佳化的目標。
The network applications and network users are rising and flourishing, and connecting to the internet is a part of our life today. The internet is being used by business and user communities with diversified quality of service expectations (QoS), leading to applications with different QoS levels requirements. The Internet Engineering Task Force (IETF) has proposed differentiated service (DiffServ) to provide class-based QoS in IP-based networks for traffic management.
Multiple-service network is a single network that can support a variety of applications and services. However without an appropriate mechanism to encourage end users to use the network properly, over-utilization and congestion are unavoidable. For this problem, it is widely accepted that pricing is a proper tool to manage congestion, encourage network growth and allocation resource to users in a fair manner. Most researches borrowed utility functions, game theory and other concepts from microeconomics to adjust user’s behavior by applying pricing mechanisms and to maximize the Internet service provider’s (ISP) revenue. In the Multiple-service network, the majority of research on revenue management aims at maximizing income through the optimization of services availability and price, little is known about effects of the feedback of quality and price of the users. Therefore, this thesis tries to consider it from both the ISP's point of view and user’s response to study feasibility of long-term revenue optimization under quality feedback consideration and pricing mechanism.
NS-2 is used to simulate a congested DiffServ network with dynamic flow and user feedback on quality, price and demand under three different pricing schemes. Simulation results show that congestion pricing display a better performance in the aspects of utilization, price variance, offered load and fair resource allocation. The congestion pricing policy with the feedback mechanism also demonstrates a concave curve relationship exists between revenue and offered load. It is expected that a long-term revenue maximization is accomplishable under the suggested scheme.
Cisco,Cisco視訊網路通訊指南,2008
柯志亨、程榮祥、謝錫堃、黃文祥,計算機網路實驗:以NS-2模擬工具實作,學貫行銷股份有限公司,2005
施小中,使用壅塞敏感性之取樣方法來建立差異式服務之封包丟棄器,國立成功大學資訊管理研究所碩士論文,2008
Altmann, J. and Chu, K. (2001). How to charge for network services: flat-rate or usage-based? Computer Networks 36(5-6): 519-531.
Altman, J. and Chu, K. (2001). A proposal for a flexible service plan that is attractive to users and internet service providers. IEEE INFOCOM, Conference on Computer Communications, Proceedings, Anchorage, Alaska, USA.
Bernet, Y., Yavatkar, R., Baker, F., Zhang, L., Speer, M., Braden, R., Davie, B., Wroclawski, J. and Felstaine, E. (2000). A Framework for Differentiated Services, Request for Comments (RFC) 2998.
Braden, R., Clark, D. and Shenker, S. (1994). Integrated Services in the Internet Architecture: an Overview, RFC1663.
Braden, R., Zhang, L., Berson, Herzog, S. and Jamin, S. (1997). Resource ReSerVation Protocol (RSVP), RFC 2205.
Blake, S., Black, D., Carlson, M., Davies, E., Wang, Z. and Weiss, W. (1998). An Architecture for Differentiated Services, RFC2475.
Chang, X. J. and Petr, D. W. (2001). A survey of pricing for integrated service networks. Computer Communications 24(18): 1808-1818.
Chiang, W. C., Chen, J.C.H. and Xu, X. (2007). An overview of research on revenue management: current issues and future research. International Journal of Revenue Management 1(1):97-128.
Clark, D. D. (1995). Internet cost allocation and pricing. in McKnight, L., Bailey, J. (Eds), Internet Economics, MIT Press, Cambridge.
Cocchi, R., Estrin, D., Shenker, S. and Zhang, L. (1991). A Study of Priority Pricing in Multiple Service Class Networks. Proceedings of SIGCOMM 91:123-130.
Cocchi, R., Estrin, D. and Zhang, L. (1993). Pricing in Computer Networks: Motivation, Formulation and Example. ACM/IEEE Transactions on Networking 1:614-627.
Cross, R. G. (1998). Revenue management: hard-core tactics for market domination, Broadway Book, NY, USA..
DaSilva L. A. (2000). Pricing For QoS-Enabled Networks: A Survey. IEEE Communications Surveys Second Quarter.
Dai, Y., Chao, X., Fang, S.C. and Nuttlei, H. L. W. (2005). Pricing in revenue management for multiple firms competing for customers, Int. J. Production Economics 98:1–16.
Dolan, R. J. and Simon, H. (1996). Power Pricing: How Managing Price Transforms the Bottom Line Simon & Schuster, Inc., NY, USA.
Dovrolis, C. and Ramanathan, P. (1999). A case for relative differentiated services and the proportional differentiation model. IEEE Network 13(5):26-34.
Dovrolis, C. and Ramanathan, P. (2003). Dynamic class selection and class provisioning in proportional differentiated services. Computer Communications 26(3):204-221.
Gibbens, R., Mason, R. and Steinberg, R. (2000). Internet Service Classes under Competition, IEEE Journal on Selected Areas in Communications, 18(12):2490–2498.
Gupta, A., Stahl, D.O. and Whinston, A.B. (1997). A stochastic equilibrium model of Internet pricing. Journal of Economic Dynamics and Control, 21(4-5), 697-722.
Gupta, A., Stahl, D.O. and Whinston, A.B. (1999). The economics of network management. Communications of the ACM 42(9):57-63.
Henderson, T., Crowcroft, J. and Bhatti, S. (2001). Congestion pricing - Paying your way in communication networks. IEEE Internet Computing 5(5):85-89.
Heinanen, J., Baker, F., Weiss, W. and Wroclawski, J. (1999). Assured Forwarding PHB Group," RFC 2597.
Honig, M. L. and Steiglitz, K. (1995). Usage-based Pricing of Packet Data Generated by a Heterogeneous User Population. 14th Annual Joint Conference of the IEEE Computer and Communications Societies (IEEE INFOCOM 95) Bringing Information to People, Boston.
Hou, J., Yang, J. and Papavassiliou, S. (2002). Integration of Pricing with Call Admission Control to Meet QoS Requirements in Cellular Networks, IEEE Trans. Parallel and Distrib. Sys., 19(9):898-910
Hwang, J. and Weiss, M. B.H. (2008). Service differentiation economic models and analysis of market-based QoS interconnections. Telematics and Informatics 25(4): 262-279.
Jacobson, V., Nichols, K. and Poduri, K. (1999). An Expedited Forwarding PHB, RFC 2598, Jun.
Joutsensalo, J., Hamalainen, T., Luostarinen, K. and Siltanen, J. (2006). Adaptive Scheduling Method for Maximizing Revenue in Flat Pricing Scenario. International Journal of Electronics and Communications, 60:159-167.
Joutsensalo, J., Viinikainen, A., Hämäläinen, T. and Wikström, M. (2007). Pricing based adaptive scheduling method for bandwidth allocation. Aeu-International Journal of Electronics and Communications 61(2):118-126.
Kenyon, C. and Cheliotis, G. (2001). Stochastic models for telecom commodity prices. Computer Networks-the International Journal of Computer and Telecommunications Networking 36(5-6):533-555.
Kimes, S. E. (1989). Yield management: A tool for capacity-considered service firms. Journal of Operations Management 8(4): 348-363
Lehr, W. H. and Weiss, M. B. H. (1996). The political economy of congestion charges and settlements in packet networks. Telecommunications Policy 20(3): 219-231.
Li, T. S., Iraqi, Y. and Boutaba, R. (2004). Pricing and admission control for QoS-enabled Internet. Computer Networks-the International Journal of Computer and Telecommunications Networking 46(1):87-110.
Lu, N. and Bigham, J. (2007). On utility-fair bandwidth adaptation for multi-class traffic QoS provisioning in wireless networks. Computer Networks 51(10): 2554-2564.
Mackiemason, J. K. and Varian, H. R. (1995). Pricing Congestible Network Resources. IEEE Journal on Selected Areas in Communications 13(7):1141-1149.
McKnight, L. W. and Boroumand, J. (2000). Pricing Internet services: after flat rate. Telecommunications Policy 24(6-7):565-590.
O'Donnell, A. J. and Sethu, H. (2003). Congestion control, differentiated services, and efficient capacity management through a novel pricing strategy. Computer Communications 26(13):1457-1469.
Odlyzko, A. (1999). Paris Metro Pricing: The minimalist differentiated services solution. 7th International Workshop on Quality of Service (IWQOS 99), London, England.
Odlyzko, A. (2001). Internet pricing and the history of communications. Computer Networks-the International Journal of Computer and Telecommunications Networking 36(5-6):493-517.
Pal, S., Chatterjee M. and Das, S. K. (2005). A two-level resource management scheme in wireless networks based on user-satisfaction. ACM SIGMOBILE Mobile Computing and Communications Review. 9(4):4-14
Rekhter, L. (1998). A Provider Architecture for Differentiated Services and Traffic Engineering, RFC 2430.
Sairamesh, J. and Kephart, J. O. (2000). Price dynamics and quality in information markets. Decision Support Systems 28(1-2):35-47.
Shenker, S. J. (1995). Fundamental Design Issues for the Furture Internet. IEEE JSAC 13(7):1176-1188.
Shenker, S., Clark, D., Estrin, D. and Herzog, S. (1996). Pricing in computer networks: Reshaping the research agenda. Telecommunications Policy 20(3):183-201.
Shenker, S., Partidge, C. and Guerin, R. (1997). Specification of Guaranteed Quality of Service, RFC 2212.
The Network Simulator-NS-2, available http://www.isi.edu/nsnam/ns/
Wenders, J. T. (1987). The economics of telecommunications:theory and policy. Ballinger Publishing Company, Cambridge.
Walker, D., Kelly, F. and Soloman, J. (1997). Tariffing in the new IP/ATM environment Telecommunications Policy 21(4):238-295.
Wang, K. C. and Ramanathan, P.(2003) End-to-end throughput and delay assurances in multihop wireless hotspots, Proceedings of the 1st ACM international workshop on Wireless mobile applications and services on WLAN hotspots, September 19, San Diego, CA, USA
Wang, X. and Schulzrinne, H. (2004). Comparative study of two congestion pricing schemes: auction and tatonnement. Computer Networks-the International Journal of Computer and Telecommunications Networking 46(1):111-131.
Wang, X. and Schulzrinne, H. (2006). Pricing network resources for adaptive applications. IEEE-Acm Transactions on Networking 14(3):506-519.
Xiao, X. P. and Ni, L. M. (1999). Internet QoS: A big picture. IEEE Network 13(2): 8-18.
Zachariadis, G. and Barria, J. A. (2007). Demand management for telecommunications services. Computer Networks 51(12):3507-3524.
Zhang, F. X., Yan, Y. H. and Ahmad, A. (2004). Pricing for efficient usage in wired and wireless networks. 11th International Telecommunications Network Strategy and Planning Symposium, Vienna, AUSTRIA.