| 研究生: |
林世仁 Lin, Shin-Jen |
|---|---|
| 論文名稱: |
利用放電紡絲法開發聚乙烯醇縮丁醛及二氧化矽奈米纖維 Development of Polyvinyl Butyral and Silica Nanofibers by Electrospinning Process |
| 指導教授: |
葉茂榮
Yeh, Mou-Yung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系碩士在職專班 Department of Chemistry (on the job class) |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 95 |
| 中文關鍵詞: | 方矽石 、放電紡絲法 、聚乙烯醇縮丁醛 、二氧化矽 、石英 、鱗矽石 、水熱法 |
| 外文關鍵詞: | Cristobolite, Tridymite, Quartz, Silica, Polyvinyl butyral, Electrospinning process, Hydrothermal process |
| 相關次數: | 點閱:76 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要是著重於有機相與無機相混成的時機,及其對於所形成之二氧化矽結構的影響,利用放電紡絲法(Electrospinning)製備出聚乙烯醇縮丁醛(Polyvinyl butyral)及二氧化矽(Silica)之奈米纖維,以不同的反應時間所組成之PVB/Silica,形成具有規則排列以及具奈米級粒徑之複合纖維,並結合水熱法(Hydrothermal)在低溫條件下合成多晶相之奈米黏土礦物。
在實驗分析檢驗儀器中使用黏度計(Viscometers),量測不同PVB/Silica組成之黏度值;以傅立葉轉換紅外線光譜儀(Fourier Transform Infrared spectrometer, FTIR)來測定某一化學分子或化學物種因吸收(或發射)紅外線輻射產生振動或振動-轉動能量的變化;以熱重分析儀(Thermogravimetric Analysis,TGA)測量PVB的熱重損失;以掃描式電子顯微鏡(Scanning Electron Microscopy,SEM)觀察纖維之表面形態;X光繞射儀(X-ray Diffractometer,XRD)測定結晶性;穿隧式電子顯微鏡(Transmission Electron Microscopy,TEM)觀察表面微觀的結晶形態。
我們可以成功的製備出粒徑在60~200nm之聚乙烯醇縮丁醛(Polyvinyl butyral)及二氧化矽(Silica)奈米纖維,且因其奈米表面積化後,經高溫煅燒至600℃可轉為石英相(Quartz),800℃可轉為鱗矽石相(Tridymite)、1000℃可轉為方矽石相(Cristobolite-α),並藉由奈米複合纖維之模板效應使用水熱法在低溫成長出多晶相之二氧化矽礦石。
This research is mainly in organically dealing with the inorganic blending emphatically the opportunity, regarding forms the silicon dioxide structure influence.Preparation the Polyvinyl butyral nanofiber and the increase forms it in vitro ceram (Silica) by different composition PVB/Silica to have the regular array and the nanometer level particle size the complex fiber by Electrospinning and using Hydrothermal process synthesizes the polycrystal nano mineral clay under the low temperature condition.
The viscosity value of the gauging different PVB/Silica composition in the experiment analytical control instrument using the viscometers、 (Fourier Transform Infrared spectrometer, FTIR) determines some chemistry member either the chemical species absorbs or launch the infrared emission has the vibration or the vibration - rotation energy change、 (Thermogravimetric Analysis, TGA) surveys PVB by the thermogravimetry analyzer the thermogravimetry to lose,、shows the (Differential Scanning Calorimetry, DSC) to discuss the thermal property、(Scanning Electron Microscopy, SEM) to observe of surface contours、(X-ray Diffractometer, XRD) to determine the crystallinity、 (Transmission Electron Microscopy, TEM) observes the superficial microscopic crystallization shape.
The experimental result obtains, we may succeed the preparation nano particle size Polyvinyl butyral nanofiber and the particle size is smaller than silicon dioxide of (Silica) nanometer textile fiber a 200nm polyvinyl butyral in the 60~200nm, because and the surface area to 600℃ transfers Quartz after the high temperature calcination, 800℃ rotatable for Tridymite,1000℃ rotatable for Cristobolite-αand grows polycrystalline Cristobolite-α by the template of effect use Hydrothermal in low temperature because of the nanometer complex fiber.
1. B. Munro, P. Conrad, S. Kramer, H. Schmidt. Solar Energy Materials and Solar Cells. 1998, 54, 131.
2. H. M. Ebelmen, Ann Chimie. Phys. 1846, 16, 129.
3. F. Feher, H. Berthold, J. Z. Anorg. Allg. Chem. 1953, 273, 144.
4. H. Dislich, Glastechn.Ber. 1971, 44, 1.
5. C. JeffreyBrinker George W. Scherer Sol-Gel-Science Chap 3.
6. C. Aelion, A. Loebel and F. Eirich. J.Am. Chem. Soc. 1950, 72, 5705.
7. Y. Wei, J. M. Yeh, D. Jin. Chem. Mater. 1995, 7, 969.
8.化工資訊,1998, 2, 32.
9. G. Kim, A. Wutzler. Chem. Mater. 2005, 17, 4949-4957.
10. Rutledge, G. L. and Warner, S. B. National Textile center Annual Deport. November 2002, M01-MD22.
11. Kim, J. S. Polymer J. (Tokyo). 2000, 32(7), 616
12. Wang, Y. J. of Material. Sci. Lett. 2002, 21(13) , 1055.
13. Chunk , H. Y., PCT Int. Appl. WO2002020668.
14. H. Berthold. Nature. 2001, 411, (May, 17), 236.
15. Yun, K. S., PCT Int. Appl. 2001, WO 2001089022.
16. Gneiner. Macromolecules. 2002, 35, 2429.
17. Jia, H. F. Biotechnology Progress, 2002, 18(5), 1027.
18. Wnek, G. E. Macromolecules. 2002, 36, 3803.
19. Lee, S. H. Macromolecular Research. 2002, 10, 5, 252.
20. S. Wade, T. Suzuki and T. Noma. J. Ceram. Soc. Jpn. 1995, 12, 103.
21. G. W. Morey. J. Am .Ceram. Soc. 1953, 36, 279.
22. X. Wang, X. Chen, L.Gao, H. Zheng, Z. Zheng ,Y. Qian. J. Phys. Chem. B. 2004, 108, 16401.
23. T. Kasuga, H. J. Hiramatsu, A. Hoson, T. Sekino, K. Niihara . Langmuir. 1998, 14, 3160.
24. T. Kasuga, H. J. Hiramatsu, A. Hoson, T. Sekino, K. Niihara. Adv. Mater. 1999, 11, 1307.
25. D. Seo, J. K. Lee, H. J. Kim . Cryst. Growth.,2001, 229, 428.
26. Y. Zhu, H. Li, Y. Koltypin, Y.R. Hacohen, A. Gedanken. Chem. Commun. 2001, 2616.
27. Q. Zhang, L. Gao, J. Sun, S. Zheng. Chem. Lett . 2002, 226.
28. Y. Q. Wang, G. Q. Hu, X. F. Duan, H. L. Sun, Q. K. Xue . Chem. Phys. Lett. 2002, 365, 427.
29. B. D. Yao, Y. F. Chan, X. Y. Zhang, W. F. Zhang, Z. T. Yan, N. Wang , Appl. Phys. Lett . 2003, 82, 281.
30. C. C. Tsai, H. S. Teng , Chem. Mater. 2004, 16, 4352.
31. W. Wang, O. K. Varghese, M. Paulose, C. A. Grimes . J. Mater .Res. 2004, 19, 417.
32. R. H. Perry, C. H. Chilton. J. Mater. Res. 2003, 18, 156.
33. George R.Brubaker. Corrosion Chemistry. 1979.
34. Y. Wang, N. Herron, Solid State Commun. 1991, 77, 33.
35. F. E.Karasz, P. n. Prasad, Y. Pang, US Patent 5,130,362, 1992, July.
36. S. P. Armes, S. Gottesfeld, J. G. Berry, Polymer, 1991, 32, 2325.
37. S. Kobayashi, T. Saegusa, Makromol. Chem., 1992, 1-9, 64.
38. C.G.Gebelein, Biometic. Polymer, New York, 1990.
39. Bruce M. Novak, Adv.Mater. 1993, Vol.5, No.6, 422.
40. Japanese R&D trend analysis advanced materials-phase VI, Rep.
No.1; Organic-In Organic polymer hybrids, KRI, 1994, May.
41. 王執明,1989;"肺症所關切的礦石 - 矽石類礦物",行政院勞工委員會。
42. ILO, 1991; "Silica & Silicates" in "Encyclopedia of Occupational Health & Safety", 3rd Ed., L, Parmeggiani: 2032-2036.
43. 王執明,田沛霖,靳文潁,石東生,1989; "台灣地區工業用礦石游離二氧化矽含量調查報靠告",行政院勞工委員會。
44. American Conference of Governmental Industrial Hygienists, USA, 1996, 33.
45. X. L. Rayleigh, London, Edinburgh, and Dublin Phil. Mag. 44.1882, 184, 6.
46. J. Zeleny. J. Phys Rev. 1914, 3, 69.
47. J. Zeleny. Phys. Rev. 1917, 10, 1.
48. A. Formhals, Process and apparatus for preparing artificial threads. 1934, US Patent 1, 975, 504.
49. G. I. Taylor, Disintegration of water drops in an electric field. 1964, Proc. R. Soc. London, Ser. A 280, 383 .
50. G. I. Taylor, The stability of horizontal fluid interface in a vertical Electric field. 1965 , J. Fluid Mech. 22, 1.
51. G. I. Taylor, The circulation produced in a drop by an electric field. 1966 , Proc. R. Soc. London, Ser. A 291, 145 .
52. G. I. Taylor, Electrically driven jets. 1969, Proc. R. Soc. London, Ser. A313, 453 .
53. L. Larrondo, R. St. J. Manley. J. Polym. Sci., B, Polym. Phys. 1981,Ed. 19909.
54. L. Larrondo, R. St. J. Manley, J. Polym. Sci., B, Polym. Phys. Ed. 19, 921.(1981)。
55. L. Larrondo, R. St. J. Manley, J. Polym. Sci., B, Polym. Phys. Ed. 19, 933 (1981)。
56. D. H. Reneker, I. Chun, Nanometre diameter fibres of polymer, produced by electrspinning, Nanotechnology 7, 216 (1996)。
57. Z. W. Fu T. Jun. Ma, Q. Z. Qin, Solid State Ionics 176 (2005)1635 – 1640
58. D. H. Reneker, J. Doshi, Electrospinning process and applications of electrospun, J. electrostatics 35, 151 (1995)。
59. H. Fong, I. Chun, D. H. Reneker, “Beaded nanofibers formed during electrospinning” , Polymer, 40, 4585 (1999)
60. H. Liu, Y. L. Hsieh, “Ultrafine fibros cellulose membranes from electrospinning of cellulose acetate” J. Polym. Sci., Part:B, Polym. Phys. , 40, 2119(2001).
61. X. Zong, K. Kim, D. Fang, S. Ran, B. S. Hsiao, B. Chu, “Structure and process relationship of electrospun bioabsorbable nanofiber membranes”, Polymer, 43, 4403 (2002)
62.K. H. Lee, H. Y. Kim, H. J. Bang, Y. H. Jung, S. G. Lee, “The change of bead morphology formed on electrospun polystyrene fibers”, Polymer, 44, 4029 (2003)
63.K. H. Lee, H. Y. Kim, Y. J. Ryu, K. W. Kim, S. W. Choi,
“Mechanical behavior of electrospun fiber mats of poly(vinyl chloride)/polyurethane polyblends”, J. Polym. Sci., Part:B, Polym. Phys. , 41, 1256 (2003)
64.D. Li, Y. Xia, “Fabrication of titania nanofibers by electrospinning” Nano Letters, 3, 555(2003)
65. J. M. Deitzel, J. Kleinmeyer, D. Harris, N. C. B. Tan, “The effect of processing variables on the morphology of electrospun nanofibers and textiles”, Polymer, 42, 261 (2001)
66. A. Koski, K. Yim, S. Shivkumar, “Effect of molecular weight on fibrous PVA produced by electrospinning”, Materials Letters, 58, 493 (2004)
67. C. L. Casper, J. S. Stephens, N. G. Tassi, D. B. Chase, J. F. Rabolt,“Controlling surface morphology of electrospun polystyrene fibers:effect of humidity and molecular weight in the electrospinning process”, Macromolecules 37, 573(2004).
68. S. Koombhongse, W. Liu, D.H. Reneker, “Flat polymer ribbons and other shapes by electrospinning” J. Polym. Sci.,Part:B, Polym. Phys. 39, 2598(2001).
69. M. Bognitzki, W.Czado, T. Frese, A. Schapor, M. Hellwig, M.Steinhart,A. Greiner, J. H. Wendorff, “Nanostructured fibers via electrospinning”, Adv. Mater. 13, 70 (2001)
70. S. Megelski, J. S. Stephens, D. B. Chase, J. F. Rabolt, “Micro- and nanostructured surface morphology on electrospun polymer fibers” , Macromolecules 35, 8456 (2002)
71. L. Wannatong, A. Sirivat, P. Supaphol, “Effects of solvents on electrospun polymeric fibers:preliminary study on polystyrene” Polym. Int. 53, 1851(2004)
72. P. K. Baumgartyen, “Electrostatic spinning of acrylic microfibers”, J.Colloid Interface Sci. 36, 71(1971).
73. C. J. Buchko, L. C. Chen, Y. Shen, D. C. Martin, “Processing and microstructural characterization of porous biocompatible protein polymer thin films” Polymer, 40, 7397(1999)
74. K. H. Lee, H. Y. Kim, Y. M. La, D. R. Lee, N. H. Sung, “Influence of A mixing solvent with tetrahydrofuran and n,n-dimethylformamide on electrospun poly(vinyl chloride) nonwoven mats”, J. Polym. Sci. , Part : B, Polym. Phys. 40, 2259(2002)
75. Z. M. Huang, Y. Z. Zhang, M. Kotaki, S. Ramakrishna, “A review on polymer nanofibers by electrospinning and their applications in nanocomposites” Compos. Sci. Technol. 63, 2223(2003).
76. E. D. Boland, G. E. Wnek, D. G. Simpson, K. J. Pawlowski, G. L. Bowlin, “Tailoring tissue engineering scaffolds using electrostatic processing techniques:A study of poly(Glycolic acid) electrospinning” J. Macromol. Sci.—Pure Apply. Chem., A38, 12, 1231(2001)
77. J. A. Matthews, G. E. Wnek, D. G. Simpson, G. L. Bowin,
“Electrospinning of collagen nanofibers”acromolecules, 3, 232 (2002)
78. E. Zussman, A. Theron, A. L. Yarin, “Formation of nanofibers crossbars in electrospinning”, Appl. Phys. Lett. 82, 973(2003)
79. E. Smita, U. Bu˝ttnerb, R. D. Sanderson, “Continuous yarns from electrospun fibers”, Polymer, 46, 2419 (2005)
80. R. Dersch, T. Liu, A. K. Schaper, A. Greiner, J. H. Wendorff,“Electrospun nanofibers: Internal structure and intrinsic orientation” Journal of Polymer Science: Part A: Polymer Chemistry, 41, 545 (2003)
81. P. Katta, M. Alessandro, R. D. Ramsier, and G. G. Chase,“Continuous electrospinning of aligned polymer nanofibers onto a wire drum Collector” Nano Lett., 4, (2004)
82. J. M. Deitzel, J. D. Kleinmeyer, J. K. Hirvonen, N. C. Beck Tan,“Controlled deposition of electrospun poly(ethylene oxide) fibers" Polymer, 42, 8163 (2001)
83. P. D. Daltona, D. Klee, Martin Möller"Electrospinning with dual collection rings” Polymer , 46 ,611 (2005)
84. G. Larsen, R. Velarde-Ortiz, K. Minchow, A. Barrero, I. G. Loscertales, J. Am, Chem. Soc. 2003, 125, 1154.
85. S. -S. Choi, S. G. Lee, S. S. Im, S. H. Kim, J. Mater. Sci. Lett. 2003, 22, 891.
86. D. Li, Y. Wang, Y. Xia, Nano Lett. 2003, 3, 1167.
87. D. Li, T. Herricks, Y. Xia, Appl. Phys. Lett. 2003, 83, 4586.
88. A.G. Mikos, G. Sarakinos, S.M. Leite, J.P. Vacanti, R. Langer. Laminated three-dimensional biodegradable foams for use in tissue engineering. Biomaterials.14: 323-330, 1993.
89. Larrondo L and Manley R St J. Electrostatic fiber spinning from polymer melts.I~III. J. Polymer sci. :Polymer Phys. Edn 19: 909-40, 1981.
90. K. Mstsuda, S. Suzuki, N. Isshiki, K. Yoshioka, R. Wada, S Hyon, Y. Ikada.Evaluation of bilayer artificial skin capable of sustained release of antibiotic.Biomaterials. 13: 119, 1992.
91. K. Mstsuda, S. Suzuki, N. Isshiki, Y. Ikada. Re-freeze dried bilayerartifical skin.Biomaterials. 14: 1030, 1993.
92. L. Hinrichs, E. Lommen, C. Wildevuur, J. Feijen. Fabrication andcharacterization of an asymmetric polyurethane membrane for use as a wounddressing. J. Appl.Biomater. 3: 287, 1992.
93. Younger WJ. Pyrrhea. alveolaris from a bacteriological standpoint with a report of some investigations and remarks on the treatment. Inter Dent J. 20: 413-423, 1899.
94. McCall J.O. An improved method of inducing reattachment of the gingival tissue in periodontolclasia. Dental Iterms of Interest. 48: 42-358, 1926.
95. Nyman S, Karring T. New attachment following surgical treatment of human periodontal disease. J .Cin .Periodontol. 9: 290-296, 1982.
96. Isidor F, Karring T, Nyman S. New attachment-reattachment following reconstructive periodontal surgery. J of Clin Periodontology. 12: 728-735, 1985.
97. Nyman S, Karring T. New attachment following surgical treatment of human periodontal disease. J .Cin .Periodontol. 9: 290-296, 1982.
98. Gottlow J, Nyman S, karring T & Lindhe J. New attachment formation as the result of controlled tissue regeneration. J of Clin Periodontology. 11: 494-503, 1984.
99. Scantlebury TV. 1982-1992: A decade of technology development for guided tissue regeneration. J Periodontol. 64: 1129-1137, 1993.
100. Chan SW, Dung TS. Application of collagen membranes in periodontal regeneration. Chin J Periodontol. 4: 173-188, 1999.
101. Strathmann H. Synthetic Membranes: Science, Engineering, and Applications, ed. P. M. Bungay, H. K. Lonsdale, M. N. de Pinho, Riedel Publishing, New York, 1983.
102. Warrer k, Karring T. Guided tissue regeneration using biodegradable membranes of polylactic acid or polyurethane. J of Periodontal Research. 65: 1029-1036, 1992.
103. SW. C, TS. D, Chin J Periodontol, 1999. 479-95.