簡易檢索 / 詳目顯示

研究生: 吳星志
Wu, Shing-Jyh
論文名稱: 手椅狀碳微管超晶格的能帶及電磁性質分析
Magneto-electronic properties of Armchair Carbon Nanotube Superlattice
指導教授: 林明發
Lin, Min-Fa
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2004
畢業學年度: 92
語文別: 英文
論文頁數: 61
中文關鍵詞: 超晶格碳微管
外文關鍵詞: carbon nanotube, superlattice
相關次數: 點閱:80下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • none

    We have used the tight-binding model to calculate the energy band of the armchair (6,6) carbon nanotubes in several different kinds of collocation including one single tube, a pair of aligned tubes, and the linear superlattice. The magneto-electronic property of these combinations of armchair (6,6) has showed a tremendous dependence on the geometric structure, the magnetic flux and the Spin-B interaction (Zeeman splitting). The pair and the linear superlattice of AB stacking can promote more overlap of the conduction and valence bands, and hence make the tubes more metallic. On the other hand, though the pair of AA stacking is more metallic than only a single tube, the superlattice of the same stacking will inherently open a tiny energy gap such as a semiconductor. When considering a uniform magnetic field applied on these systems along the tube axis direction, the magnetic flux will strongly affect the band structure of each system and show a conspicuous tendency to open or enlarge energy gap and hence bring metal into semiconductor. The spin-B interaction (Zeeman splitting) has been further included into consideration and seemed to suppress the extent of metal-semiconductor transition.

    Abstract..................................................1 1. Introduction..........................................2 2. Lennard-Jones potential...............................4 3. Magneto-electronic structures.........................5 4. Concluding remarks...................................14 References...............................................15 Figure Captions..........................................17 Figures..................................................20 Appendix: Fortran 77(90) Programs........................40

    [1] S. Iijima: Nature (London) 354, 56 (1991).
    [2] R. Saito, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus: Appl. Phys. Lett. 60 2204 (1992). And Phys. Rev. B 46 (3), 1804 (1992).
    [3] N. Hamada, S. I. Sawada and A. Oshiyama: Phys. Rev. Lett. 68, 1579 (1992)
    [4] J. W. Mintmire, B. I. Dunlap, and C. T. White: Phys. Rev. Lett. 68, 631 (1992)
    [5] A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tomanek, J. E. Fischer, and R. E. Smalley: Science 273, 483 (1996).
    [5] L. A. Girifalco, and R. A. Lad: J. Phys. Chem. 25, 693 (1956).
    [6] W. A. Harrison: Electronic Structure and the Properties of Solids, Dover, New York, 1989.
    [7] Marcel H. F. Sluiter, Vijay Kumar, Yoshiyuki Kawazoe: Physica B 323 (2002)
    [8] S. Okada, A. Oshiyama, and S. Saito: J. Phys. Soc. Jap. 70, 8 (2001)
    [9] S. Loughin, R. H. French, L. K. De Noyer, W. Y. Ching, and Y. N. Xu: J. Phys. D: Appl. Phys. 29 (1996)
    [10] R. Saito, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus: Phys. Rev. B 61, 4, 2981 (2000)
    [11] J. W. Mintmire and C. T. White: Phys. Rev. Lett. 81, 12, 2506 (1998)
    [12] R. Saito, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus: Phys. Rev. B 50, 19, 14698 (1994)

    下載圖示 校內:立即公開
    校外:2004-09-06公開
    QR CODE