| 研究生: |
陳胤合 Chen, Ying-He |
|---|---|
| 論文名稱: |
連續式微流體系統運用於系統性配位子指數增益演繹程序 A Continuous Microfluidic System for Systematic Evolution of Ligands Exponential Enrichment (SELEX) |
| 指導教授: |
李國賓
Lee, Gwo-Bin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 78 |
| 中文關鍵詞: | 系統性配位子指數增益演繹程序 、磁珠 、微流體 、微機電系統 |
| 外文關鍵詞: | SELEX, magnetic beads, microfluidics, MEMS |
| 相關次數: | 點閱:94 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究設計出一連續式自動化微流體晶片系統,藉由系統性配位子指數增益演繹程序(SELEX),針對甲型胎兒球蛋白(alpha-fetoprotein),進行以磁珠為固相的適合體篩選流程。將磁珠應用於適合體之萃取,並在晶片上進行聚合酶連鎖式反應增幅,可以減少人為操作的誤差,更大幅縮短操作時間與步驟,具有低樣品及檢體消耗量、低耗能、體積小以及成本低等優點,相較傳統技術,有著突破性的發展價值。
本微流體晶片系統中包含兩種微型幫浦、微混合器以及微型聚合酶連鎖反應模組等。其中線型微型幫浦在通入氣壓為10 psi,操作條件為10 Hz 時,能夠準確地傳輸檢體 (流速為1 μL/sec),可避免檢體或試劑的浪費;而環狀微型幫浦在同樣氣壓下,操作條件為15 Hz 時,兼具混合與大量傳輸的功能 (流速為21.7 μL/sec);微混合器可於5秒內達到約98.6 % 的混合效果,可使檢體於最短的時間內有最佳的混合效率;微型聚合酶連鎖反應模組之試劑儲存區的溫度低於40℃,可確保酵素與蛋白質的活性不被破壞,並能成功執行 DNA 之增幅。而所有元件將整合於一微型晶片系統上,可達到自動化傳輸流體、混合的功能,並於最後將微流體系統晶片應用於甲型胎兒球蛋白適合體篩選流程。
本研究成功地達到連續式的系統性配位子指數增益演繹程序篩選流程,單一次流程只需花費約六十分鐘,整套篩選流程(五次)花費時間只需近六小時即可完成。同時使用此套系統進行甲型胎兒球蛋白適合體篩選,實驗結果也驗證相關的適合體可被萃取出來,而本適合體的鑑結強度藉由與另一已知解離常數 (KD=2.37 nM) 適合體來進行比較評估,顯示其具有相當的親和力,來進行甲型胎兒球蛋白的檢測。
This study reports a continuous microfluidic system which utilizes systematic evolution of ligands by exponential enrichment (SELEX) technique for rapid screening of specific aptamers for alpha-fetoprotein (AFP). The system utilizing magnetic bead-based techniques to select DNA aptamers has several advantages over its large-scale counterparts, including rapid screening process, automation, and less consumption of samples/reagents. With a microfluidic control module for incubation process and an on-chip polymerase chain reaction (PCR) module for amplification of these selected aptamers, the entire SELEX process can be automatically performed in a shorter period of time.
This new microfluidic system integrates two types of micropumps with normally-closed microvalves, a circular-shape micromixer and an on-chip PCR module on a single chip. The linear-shaped micropump has been adopted to achieve a low flow rate (1 μL/sec) to control the PCR reagent transportation accurately. The circular-shape micropump with a high flow rate (21.7 μL/sec) was used for rapid washing process. The circular-shape micromixer can incubate the DNA with magnetic beads efficiently. The mixing index was found to increase from 16.13 % to 98.6 % within five seconds. The PCR module can rapidly amplify the target DNA. Furthermore, the temperatures of the PCR reagents and magnetic beads reservoirs was kept at 40℃ or lower during the PCR procedure.
In this study, the continuous operation of the SELEX process has been achieved in screening specific aptamers of AFP. Compared to the traditional SELEX process, this continuous microfluidic system is efficient and consumes fewer sample volumes. It took approximately 5 hours for a SELEX process with five screening runs, which was faster than that of a traditional SELEX process (8 hours for 5 rounds). And the binding affinity of this specific aptamer was compared with another aptamer which had been measured by a BIAcore X system with the dissociation constant (KD) 2.37 nM. The results show that the specific aptamer may has affinity for further AFP detection. This continuous microfluidic system may provide a powerful platform for rapid screening of target- specific aptamers.
[1] F. E. H. Tay, “Microfluidics and bio-MEMS Applications,” Kluwer Academic Publishers, 2002.
[2] M. A. Burns, B. N. Johnson, S. N. Brahmasadra, K. Handique, J. R. Webster, M. Krishnan, T. S. Sammarco, P. M. Man, D. Jones, D. Heldsinger, C. H. Mastrangelo, and D. T. Burk, “An Integrated Nanoliter DNA Analysis Device,” Science, 282, 484-488, 1998.
[3] P. A. Auroux, D. Iossifidis, D. R. Reyes, and A. Manz, “Micro Total Analysis Systems. 2. Analytical Standard Operations and Applications,” Analytical Chemistry, 74, 2637-2652, 2002.
[4] D. R. Reyes, D. Iossifidis, P. A. Auroux, and N. Manz, “Micro Total Analysis Systems. 1. Introduction, Theory, and Technology,” Analytical Chemistry, 74, 2623-2636, 2002.
[5] K. Seiler, D. J. Harrison, and A. Manz, “Planar chips technology for miniaturization and integration of separation techniques into monitoring systems,” Journal of Chromatography, 593, 253-258, 1992.
[6] E. Oosterbroek, and A. Berg van den, “Lab-on-a-chip:Miniaturized system for biochemical analysis and synthesis,” Elsevier Science, 2nd edition, Amsterdam, USA. 2003.
[7] O. Geschke, H. Klank, and P. Telleman, “Microsystem Engineering of Lab-on-a chip Devices,” John Wiley & Sons press, 2nd edition, New York, USA. 2004.
[8] J. R. Gillespie, and V. N. Uversky, “Structure and function of α-fetoproetin﹕a biophysical overview,” Biochimica et Biophysica Acta, 1480, 41-56, 2000.
[9] C. L. Bergstrand, and B. Czar, “Demonstration of a new protein fraction in serum from the human fetus,” Scandinavian Journal of Clinical and Laboratory Investigation, 8, 174-176, 1956.
[10] R. Tozzoli, “Recent advances in diagnostic technologies and their impact in autoimmune diseases,” Autoimmunity Reiview, 6, 334-340, 2007.
[11] G. I. Abelev, S. D. Perova, B. I. Khramkova, Z. A. Postnikova, and I. S. Irlin, “Production of embryonal serum-globulin by transplantable mouse hepatomas,” Transplantation, 1, 174-180, 1963.
[12] Y. S. Tatarinov, “Detectionif an embryo specific α-globulin in the blood sera from patients with primary liver tumor,” Voprosy Meditsinskoi Khimii SSSR, 10, 90-91, 1964.
[13] X. W. Wang, and H. Xie, “Alpha-fetoprotein enhances the proliferation of human hepatoma cells in vittro,” Life sciences, 64, 17-23, 1999.
[14] M. Tatsuta, H. Yamamura, H. Iishi, H. Kasugai, and S. Okuda, “Value of serum α-fetoprotein and ferritin in the diagnosis of hepatocellular carcinoma,” Oncology, 43, 306-310, 1986.
[15] R. S. Yalow, and S. A. Berson, “Immunoassay of endogenous plasma insulin in man,” The Journal of Clinical Investigation, 39, 1157-1175, 1960.
[16] E. Engvall, and P. Perlman, “Enzyme-linked immunosorbent assay (ELISA). Quantitative assay of immunoglobulin G,” Immunochemistry, 8, 9, 871-874, 1971.
[17] R. A. Golds, T. J. Kindt, and B. A. Osborne, “Kbuy immunology,” W.H Freeman and Company, New York, 2002.
[18] J. W. Choi, K. W. Oh, J. H. Thomas, W. R. Heineman, H. B. Halsall, J. H. Nevin, A. J. Helmicki, H. T. Henderson, and C. H. Ahn, “An integrated microfluidic biochemical detection system for protein analysis with magnetic bead-based sampling capabilities,” Lab on a Chip, 2, 27-30, 2002.
[19] S. F. Chou, W. L. Hsu, J. M. Hwuang, and C. Y. Chen, “Determination of α-Fetoprotein in Human Serum by a Quartz Crystal Microbalance-based Immunosensor,” Clinical Chemistry, 48, 913-918, 2002.
[20] J. A. Kwon, H. Lee, K. N. Lee, K. Chae, S. Lee, D. K. Lee, and S. Kim, “Comparison of antibody and aptamer receptors for the specific detection of thrombin with a nanometer gap-sized impedance biosensor,” Analytica Chimica Acta, 573-574, 65-68, 2006.
[21] J. A. Kwon, H. Lee, K. N. Lee, K. Chae, S. Lee, D. K. Lee, and S. Kim, “High diagnostic accuracy of antigen microarray for sensitive detection of hepatitis C virus infection,” Clinical Chemistry, 54, 424-428, 2008.
[22] Z. Tang, D. Shangguan, K. Wang, H. Shi, K. Sefah, P. Mallikratchy, H. W. Chen, Y. Li, and W. Tan, “Selection of Aptamers for Molecular Recognition and Characterization of Cancer Cells,” Analytical Chemistry, 79, 4900-4907, 2007.
[23] A. D. Ellington, and J. W. Szostak, “In vitro selection of RNA molecules that bind specific ligands,” Nature, 346, 818-822, 1990.
[24] C. Tuerk, and L. Gold, “Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase,” Science, 249, 505-510, 1990.
[25] D. H. J. Bunka, and P. G. Stockley, “Aptamers come of age-at last,” Nature Reviews Microbiology, 4, 588-596, 2006.
[26] G. Karp, “Cell and molecular biology: concept and experiments,” 3rd Edition, John Wiley & Sons, Inc. New York. 2002.
[27] S. K. Sia, and G. M. Whitesides, “Microfluidic devices fabricated in Poly(dimethylsiloxane) for biological studies,” Electrophoresis, 24, 3563-3576, 2003.
[28] P. Gascoyne, J. Satayavivad, and M. Ruchirawat, “Microfluidic approaches to malaria detection,” Acta Tropica, 89, 357-369, 2004.
[29] J. W. Choi, K. W. Oh, J. H. Thomas, W. R. Heineman, H. B. Halsall, , J. H. Nevin, A. J. Hemicki, H. T. Hederson, and C. H. Ahn, “An integrated microfluidic biochemical detection system for protein analysis with magnetic bead-based sampling capabilities,” Lab on a Chip, 2, 27-30, 2002.
[30] Y. F. Lee, K. Y. Lien, H. Y. Lei, and G. B. Lee, “An integrated microfluidic system for rapid diagnosis of dengue virus infection,” Biosensors and Bioelectronics, 25, 745-752, 2009.
[31] T. M. Hsieh, C. H. Luo, J. H. Wang, J. L. Lin, K. Y. Lien, and G. B. Lee, “A two-dimensional, self-compensated, microthermal cycler for one-step reverse transcription polymerase chain reaction applications,” Microfluidics and Nanofluidics, 6, 797-809, 2009.
[32] S. D. Mendonsa, and M. T. Bowser, “In vitro evolution of functional DNA using capillary electrophoresis,” Journal of the American Chemical Society, 126, 20-21, 2004.
[33] G. Hybarger, J. Bynum, R. F. Williams, J. J. Valdes, and J. P. Chambers, “A microfluidic SELEX prototype,” Analytical and Bioanalytical Chemistry, 384, 191-198, 2006.
[34] J. Qian, X. Lou, Y. Zhang, Y. Xiao, and H. T. Soh, “Generation of Highly Specific Aptamers via Micromagnetic Selection,” Analytical Chemistry, 81, 5490-5495, 2009.
[35] X. Loua, J. Qianb, Y. Xiao, L. Vielb, A. E. Gerdonb, E. T. Lagallya, P. Atzbergerc, T. M. Tarasowd, A. J. Heegera, and H. T. Soha, “Micromagnetic selection of aptamers in microfluidic channels,” Proceedings of the National Academy of Sciences, 106, 9, 2989-2994, 2009.
[36] C. J. Huang, H. I. Lin, S. C. Shiesh, and G. B. Lee, “Integrated microfluidic system for rapid screening of CRP aptamers utilizing systematic evolution of ligands by exponential enrichment (SELEX),” Biosensors and Bioelectronics, 25, 1761-1766, 2010.
[37] H. Aref, “Stirring by Chaotic Advection,” Journal of Fluid Mechanics, 143, 1-21, 1984.
[38] R. H. Liu, M. Ward, J. Bonanno, D. Ganser, M. Athavale, and P. Grodzinski, “Plastic in-line Chaotic Micromixer for Biological Applications,” Proceedings of the μ-TAS Conference, California, USA, 163-164, 2001.
[39] R. H. Liu, M. A. Stremler, K. V. Sharp, M. G. Olsen, J. G. Santiago, R. J. Adrian, H. Aref, and D. J. Beebe, “Passive Mixing in a Three-Dimensional Serpentine Microchannel,” Journal of Medieval and Early Modern Studies, 9, 190-197, 2000.
[40] V. Mengeaud, J. Josserand, and H. H. Girault, “Mixing processes in a zigzag microchannel: finite element simulations and optical study,” Analytical Chemistry, 74, 4279-4286, 2002.
[41] C. C. Hong, J. W. Choi, and C. H. Ahn, “A novel in-plane passive microfluidic mixer with modified Tesla structures,” Lab on a Chip, 4, 109-113, 2004.
[42] H. M. Xia, S. Y. M. Wan, C. Shu, and Y. T. Chew, “Chaotic micromixers using two-layer crossing channels to exhibit fast mixing at low Reynolds numbers,” Lab on a Chip, 5, 748-755, 2005.
[43] Z. Yang, H. Goto, M. Matsumoto, and R. Maeda, “Active micromixer for microfluidic systems using lead- zirconate-titanate (PZT)-generated ultrasonic vibration,” Electrophoresis, 21, 116-119, 2002.
[44] R. B. M. Schasfoort, S. Schlautmann, J. Hendrikse, and B. A. Vanden, “Field-effect flow control for microfabricated fluidic networks,” Science, 286, 942-945, 1999.
[45] H. Y. Tseng, C. H. Wang, W. Y. Lin, and G. B. Lee, “Membrane-activated microfluidic rotary devices for pumping and mixing,” Biomed Microdevices, 9, 545-554, 2007.
[46] S. Y. Yang, J. L. Lin, and G. B. Lee, “A vortex-type micromixer utilizing pneumatically driven membranes,” Journal of Micromechanics and Microengineering, 19, 2009.
[47] T. A. Holton, and M. W. Graham, “A simple and efficient method for direct cloning of PCR products using ddT-tailed vectors,” Nucleic Acids Research, 19( 5), 1156, 1991.
[48] N. M. Green, and E. J. Toms, “The dissociation of avidin-biotin complexes by guanidinium chloride,” Biochemical Journal, 130, 3, 707-711, 1972.
[49] B. E. Slentz, N. A. Penner, and F. E. Regnier, “Capillary electrochromatography of peptides on microfabricated poly (dimethylsiloxane) chips modified by cerium (IV)-catalyzed polymerization,” Journal of Chromatography, 948, 25-233, 2002.
[50] T. M. Hsieh, C. H. Luo, J. H. Wang, J. L. Lin, K. Y. Lien, and G. B. Lee, “A two-dimensional, self-compensated, microthermal cycler for one-step reverse transcription polymerase chain reaction applications,” Microfluidics and Nanofluidics, 6, 797–809, 2009.
[51] K. Y. Lien, W. C. Lee, H. Y. Lei, and G. B. Lee, “Integrated reverse transcription polymerase chain reaction systems for virus detection,” Biosensors and Bioelectronics, 22, 8, 1739-1748, 2007.
[52] D. Erickson, and D. Li, “Influence of Surface Heterogeneity on Electrokinetically Driven Microfluidic Mixing,” Langmuir, 18, 183-1892, 2002.
[53] C. H. Lin, C. H. Tsai, and L. M. Fu, “A rapid three-dimensional vortex micromixer utilizing self-rotation effects under low Reynolds number conditions,” Journal of Micromechanics and Microengineering, 15, 935, 2005.