| 研究生: |
辛柏克 Singh, Pramod |
|---|---|
| 論文名稱: |
小型化Ka頻帶單晶體微波積體電路晶片傳輸器與被動電路之設計與實現 Design and Implementation of Compact Ka-Band Transceiver MMIC Chips and Passive Circuits |
| 指導教授: |
王永和
Wang, Yeong-Her |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 英文 |
| 論文頁數: | 153 |
| 中文關鍵詞: | 降頻混頻器 、單晶體微波積體電路 、升頻混頻器 、功率放大器 、超寬頻帶通濾波器 、Ka頻帶 、雙頻帶濾波器 、耦合線功率分配器 |
| 外文關鍵詞: | coupled line power divider, UWB filter, dualband filter, Ka-band, MMIC, Integrated up-converter, power amplifier, integrated down-converter |
| 相關次數: | 點閱:121 下載:9 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文是探討應用於ka頻帶微型單石晶片的研製。研究中包含了升降頻混頻器、二級與四級功率放大單石晶片(MMIC),以及雙頻帶濾波器與超寬頻濾波器印刷電路(PCB)。
在ka頻帶升頻混頻器的應用設計,達到了低成本與高效能的表現。利用APDP(anti-parallel diode pair)次諧波單邊帶混頻器,以及三級的射頻放大器來完成設計。這個晶片可以操作在寬頻寬的22-38GHz,同時次諧波混頻器需要的本地震盪頻率可以降低至射頻的一半(10-19GHz)。這個晶片的轉換增益為9-15dB,而輸出端的1dB壓縮點為7-12dBm。單邊帶與APDP壓抑了頻帶內不需要的邊帶與本地震盪的二次諧波。邊帶與本地震盪二次諧波的壓抑度分別為20-35dB與20-30dB。在100um厚的GaAs基板上,晶片的大小可縮減到4.2mm2。
第二個單石微波晶片的設計,達到了面積為2.8 × 0.8 mm2 的微型晶片,同時也結合了本地震盪的放大器,以縮減本地震盪功率的需求到0dBm。轉換增益在27-37GHz為12-14dB,而邊帶壓抑度為20-27dB。輸出的1dB壓縮點為11dBm,且輸出的三階截斷點高於20dBm。
在本論文中也設計了一個應用於接收機,微型降頻混頻單石微波積體電路。這個電路結合了,APDP次諧波鏡像頻率壓抑混頻器,與射頻低雜訊放大器,也利用了半集總電路在這微型化電路中。量測的轉換增益為10-14dB,鏡像頻率抑制大於20dBc,雜訊指數在射頻29-36GHz為3.5-4.5dB,晶片面積縮減到2.24mm2。
同時研製了一個Ka頻帶的功率放大器單石微波積體電路。這個利用0.15um pHEMT實現的二級功率放大器,呈現了訊號增益高於12dB,以及在31GH時輸出功率有29dBm。另外,利用0.25um pHEMT技術,實現了在Ka頻帶的四級功率放大器,量測到的小信號增益大於20dB,以及在27GHz時有1.9W的功率輸出。
在此論文中也探討另一個在印刷電路板上製作,應用在無線系統的被動電路,其中包含了雙頻帶濾波器以及超寬頻濾波器。利用SIRs(stepped impedance resonators)實現的微型雙頻帶濾波器,具有較寬的上截止頻帶。有較寬的上截止頻帶,可以抑制射頻電路中的諧波與雜訊。這個雙頻帶濾波器的頻帶在2.45-5.24GHz與2.45-5.75GHz,具有較寬且較深的上截止頻帶。這個濾波器的面積小於190mm2,基板的介電常數εr = 3.38,基板厚度 h = 0.81 mm。
另外也製作了一個四分之波長的微型步階式組抗雙頻帶濾波器,將短路與開路的SIRs偶合在一起,以實現較高與較低的兩個通帶。這個工作頻率在2.45/5.25GHz與2.45/5.75GHz的濾波器,面積縮減到19.0×5.2mm2,並且實現在RO4003C (εr = 3.38, h = 0.81 mm) 基板上。
這篇文章同時也研製了一個平面的超寬頻帶通濾波器,利用三條邊際偶合短路微帶線來實現。這個濾波器的頻帶在3.1-10.6GHz,插入損耗約0.5dB,返回損失大約18dB,同時有銳利的頻帶外抑制能力與較低的群速延遲 (0.21ns) 。此濾波器也有較簡單的設計與較好的頻率響應。
最後,實現了一個偶合線的功率分配器,同時具有緊實的電路大小與帶通應用。這個電路佈局主要在縮減Wilkinson功率分配器的大小,這個功率分配器的帶通響應較小於單階偶合線帶通濾波器。
The design and implementation of the compact MMIC chips for Ka-band transceiver applications as well as RF passive circuits are performed. The study includes Ka-band MMIC chips such as integrated up-converters, integrated downconverter, two-stage and four-stage power amplifiers, and PCB circuits such as dualband filters, UWB filter, and power divider.
The design of integrated compact up-converter MMIC is performed to achieve low cost and high performance transmitter system for the Ka-band frequency applications. It is designed using anti-parallel diode pair sub-harmonic single sideband mixer and three stage RF (radio frequency) amplifier. The chip is operated for the wide bandwidth of 22-38 GHz. Due to sub-harmonic mixing the required local oscillator frequency (LO) is reduced to half (10-19 GHz) to that of the RF frequency. The conversion gain of the chip is 9-15 dB and P-1dB output power is 7-12 dBm. The single sideband and anti-parallel diode pair suppress the in-band unwanted sideband and second harmonic of the local oscillator (2LO), respectively. The suppression of sideband and 2LO signals is typically 20-35 dB and 20-30 dB, respectively. The size of the chip is as compact as 4.2 mm2 on a 100 μm-thick GaAs substrate.
The design of the second integrated up-converter MMIC chip is also performed with miniature chip size of only 2.8 mm × 0.8 mm. This chip is also integrated LO amplifier to reduce the LO power requirement below 0 dBm. The conversion gain of the circuit is 12-14 dB for 27-37 GHz and sideband suppression of 20-27 dB. The P-1dB output power is 11 dBm and OIP3 is above 20 dBm.
For the receiver application an integrated compact down-converter MMIC chip is designed. It is integrated anti-parallel diode pair sub-harmonic image reject mixer and RF low noise amplifier. The quasi-lumped circuit components are employed in circuit design for the compact chip size. The measured conversion gain of the chip is 10-14 dB, image rejection above 20 dBc, and noise figure 3.5-4.5 dB for the RF frequency of 29-36 GHz. The size of the chip is as compact as 2.24 mm2.
The study by design and implementation of Ka-band power amplifier MMICs is also performed. A two-stage power amplifier in 0.15 μm pHEMT technology shows small signal gain above 12 dB and output power of 29 dBm at 31 GHz. Another four-stage power amplifier MMIC in 0.25 μm pHEMT technology is also implemented for higher gain and power in Ka-band frequency. The measured small signal gain of four-stage power amplifier is greater than 20 dB and power of 1.9 W at 27 GHz.
The research on some RF passive circuits implemented on PCB (printed circuit board) is also performed for wireless applications. This includes dualband filters, UWB (ultra wideband filter), and power divider. The compact dualband filter with wide upper stopband using folded stepped impedance resonators (SIRs) and open stub is accomplished. The wide stopband is useful for the suppressing harmonics and noise in the RF circuits. Dualband filters at frequencies of 2.45/5.25 GHz and 2.45/5.75 GHz are realized with wide and deep upper stopband as well as deep mid-stopband. The size of the filters are less than 190 mm2 on a RO 4003C (ε r= 3.38, h = 0.81 mm) substrate.
A miniature dual-band filter using quarter wavelength (λg/4) stepped impedance resonators (SIRs) is also proposed. Short and open SIRs are coupled together to realize lower and upper passbands, respectively. The circuit is miniaturized due to the use of λg/4 resonators and their comb-line coupling. The filters at frequencies of 2.45/5.25 GHz and 2.45/5.75 GHz are as compact as 19.0×5.2 mm2 on a RO 4003C (ε r= 3.38, h = 0.81 mm) substrate.
The design and implementation of a planar ultra wideband (UWB) bandpass filter (BPF) is achieved too. Three interdigital edge coupled microstrip lines and stepped impedance open stub are used for realizing the UWB filter. A passband from 3.1 – 10.6 GHz is achieved with low insertion loss of 0.5 dB, a return loss of about 18 dB, a sharp out-of-band-rejection, and a low group delay of only 0.21 ns. The design of the filter is simple, and it shows good frequency response.
Finally a coupled line power divider is proposed for the compact size and bandpass applications. The layout size of the divider is reduced in comparison to conventional Wilkinson divider. The divider provides bandpass response similar to single stage coupled line bandpass filter.
Chapter 1
[1] L. E. Larson, RF and microwave circuit design for wireless communications, Boston, Artech House, 1996.
[2] N. Colmenares, “The FCC on personal wireless,” IEEE Spectrum, May 1994, pp 39-46.
[3] D. Bnatz, and F. Bauchot, “Wireless LAN design alternatives,” IEEE network, March/April 1994, pp.43-52.
[4] M. Chelouche, and A. plattner, “Mobile broadband system (MBS): Trends and impact on 60 GHz band MMIC development,” Electronics and Communications Engineering Journal, June 1993, pp. 187-197.
[5] Scott Y. Seidel, “Radio Propagation and Planning at 28 GHz for Local Multipoint Distribution Service (LMDS),” IEEE Antennas and Propagation Society International Symposium, June, 1998, pp. 622-625.
[6] Petri Mahonen, et. al,” Wireless internet over LMDS: architecture and experimental implementation,” IEEE Communications Magazine, vol 39, issue 5, May 2001, pp. 126-132.
[7] Peter N. Melezhik, et. al, “Coherent Ka-band radar with a semiconductor transmitter for airport surface movement monitoring,” Proceedings of Enhanced Surveillance of Aircraft and Vehicles-ESAV'08, September 3 – 5, Capri, Italy, pp. 1-5.
[8] Axel Brokmeier, Thomas Geist, Berthold Zimmermann, and Roland Mack, “A Miniaturised Frontend for Ka-Band Radar Applications,” European Radar Conference- EURAD 2005, 6-7 Oct., 2005, pp. 367 – 370.
[9] I. D. Robertson and S. Lucyszyn, RFIC and MMIC Design and Technology, London, IEE Publishers, 2001.
[10] Steve Marsh, Practical MMIC Design, Artech House Publishers, 2006.
Chapter 2
[1] C.-Y. Chi, and G. M. Rebeiz, “Design of Lange-couplers and single-sideband mixers using micromachining techniques,” IEEE Trans. Microw. Theory Tech., vol. 45, no.2, pp. 291-294, Feb. 1997.
[2] H. Okazaki, and Y. Yamaguchi, “Wide-band SSB subharmonically pumped mixer MMIC,” IEEE Trans. Microw. Theory Tech., vol. 45, no.12, pp. 2375-2379, Dec. 1997.
[3] K. Kawakami, M. Shimazawa, H. Ikematsu, K. Itoh, Y. Isota, and O. Ishida, “A millimeterwave broadband monolithic even harmonic image rejection mixer,” IEEE MTTs Digest, 1998, pp. 1443-1446.
[4] H. I. Fujishiro, Y. Ogawa, T. Hamada, and T. Kimura, “SSB MMIC mixer with subharmonic LO and CPW circuits for 38 GHz circuit applications,” IEE Electron. Lett., vol. 37, no. 7, pp. 435-436, 29th March 2001.
[5] M.-Q. Lee, S.-M. Moon, K.-K. Ryu, D.-P. Jang, and I.-B. Yom, “Subharmonically pumped image rejection mixer for K-band application,” 12th GAAS Symposium-Amsterdam, 2004, pp. 151-154.
[6] W.-C. Chen, S.-Y. Chen, J.-H. Tsai, T.-W. Huang, and H. Wang, “A 38-48-GHz miniature MMIC subharmonic mixer,” 13th GAAS Symposium-Paris, 2005, pp. 437-440.
[7] T. Yang, Z. Yang, Y. You, and C. Li, “Small size Ka-band monolithic fourth harmonic image rejection mixer,” Microw. Opt. Technol. Lett., vol. 49, no. 3, pp. 505-507, March 2007.
[8] K. Hettak, G. A. Morin, and M. G. Stubbs, “Size reduction of a MMIC direct up-converter at 44 GHz in multilayer CPW technology using thin-film microstrip stubs loading,” IEEE Trans. Microw. Theory Tech., vol. 54, no.9, pp. 3453-3461, Sept. 2006.
[9] O. Vaudescal, B. Lefebvre, A. M. Couturier, R. Sevin, C. Dourlens, and P. Quenlin, “A highly integrated MMIC chipset for 28 GHz LMDS application,” European Microwave Conference, Oct. 2000, pp. 1-3.
[10] S. J. Mohan, E. Convert, P. T. Beasly, A. Besseoulin, A. Fatorini, M. G. McCulloch, B. G. Lawrence, and J. T. Harvey, “Broadband integrated millimeter-wave up- and down-converter GaAs MMICs,” IEEE Trans. Microw. Theory Tech., vol. 54, no.5, pp. 2050-2060, May 2006.
Chapter 3
[1] C.-Y. Chi, and G. M. Rebeiz, “Design of Lange-couplers and single-sideband mixers using micromachining techniques,” IEEE Trans. Microw. Theory Tech., vol. 45, no.2, pp. 291-294, Feb. 1997.
[2] H. Okazaki, and Y. Yamaguchi, “Wide-band SSB subharmonically pumped mixer MMIC,” IEEE Trans. Microw. Theory Tech., vol. 45, no.12, pp. 2375-2379, Dec. 1997.
[3] K. Kawakami, M. Shimazawa, H. Ikematsu, K. Itoh, Y. Isota, and O. Ishida, “A millimeterwave broadband monolithic even harmonic image rejection mixer,” IEEE MTTs Digest, 1998, pp. 1443-1446.
[4] H. I. Fujishiro, Y. Ogawa, T. Hamada, and T. Kimura, “SSB MMIC mixer with subharmonic LO and CPW circuits for 38 GHz circuit applications,” IEE Electron. Lett., vol. 37, no. 7, pp. 435-436, 29th March 2001.
[5] M.-Q. Lee, S.-M. Moon, K.-K. Ryu, D.-P. Jang, and I.-B. Yom, “Subharmonically pumped image rejection mixer for K-band application,” 12th GAAS Symposium-Amsterdam, 2004, pp. 151-154.
[6] W.-C. Chen, S.-Y. Chen, J.-H. Tsai, T.-W. Huang, and H. Wang, “A 38-48-GHz miniature MMIC subharmonic mixer,” 13th GAAS Symposium-Paris, 2005, pp. 437-440.
[7] T. Yang, Z. Yang, Y. You, and C. Li, “Small size Ka-band monolithic fourth harmonic image rejection mixer,” Microw. Opt. Technol. Lett., vol. 49, no. 3, pp. 505-507, March 2007.
[8] K. Hettak, G. A. Morin, and M. G. Stubbs, “Size reduction of a MMIC direct up-converter at 44 GHz in multilayer CPW technology using thin-film microstrip stubs loading,” IEEE Trans. Microw. Theory Tech., vol. 54, no.9, pp. 3453-3461, Sept. 2006.
[9] O. Vaudescal, B. Lefebvre, A. M. Couturier, R. Sevin, C. Dourlens, and P. Quenlin, “A highly integrated MMIC chipset for 28 GHz LMDS application,” European Microwave Conference, Oct. 2000, pp. 1-3.
[10] S. J. Mohan, E. Convert, P. T. Beasly, A. Besseoulin, A. Fatorini, M. G. McCulloch, B. G. Lawrence, and J. T. Harvey, “Broadband integrated millimeter-wave up- and down-converter GaAs MMICs,” IEEE Trans. Microw. Theory Tech., vol. 54, no.5, pp. 2050-2060, May 2006.
Chapter 4
[1] H. Okazaki, and Y. Yamaguchi, “Wide-band SSB subharmonically pumped mixer MMIC,” IEEE Trans. Microw. Theory Tech., vol. 45, no.12, pp. 2375-2379, Dec. 1997.
[2] K. Kawakami, M. Shimazawa, H. Ikematsu, K. Itoh, Y. Isota, and O. Ishida, “A millimeterwave broadband monolithic even harmonic image rejection mixer,” IEEE MTTs Digest, pp. 1443-1446.1998.
[3] H. I. Fujishiro, Y. Ogawa, T. Hamada, and T. Kimura, “SSB MMIC mixer with subharmonic LO and CPW circuits for 38 GHz circuit applications,” IEE Electron. Lett., vol. 37, no. 7, pp. 435-436, 29th March 2001.
[4] M. Q. Lee, S. M. Moon, K. K. Ryu, D. P. Jang, and I. B. Yom, “Subharmonically pumped image rejection mixer for K-band application,” 12th GAAS Symposium-Amsterdam, 2004, pp. 151-154, 2004.
[5] W. C. Chen, S. Y. Chen, J. H. Tsai, T.W. Huang, and H. Wang, “38-48-GHz miniature MMIC subharmonic mixer,” 13th GAAS Symposium-Paris, 2005, pp. 437-440, 2005.
[6] T. Yang, Z. Yang, Y. You, and C. Li, “Small size Ka-band monolithic fourth harmonic image rejection mixer,” Microw. Opt. Technol. Lett., vol. 49, no. 3, pp. 505-507, March 2007.
[7] K. Hettak, G. A. Morin, and M. G. Stubbs, “Size reduction of a MMIC direct up-converter at 44 GHz in multilayer CPW technology using thin-film microstrip stubs loading,” IEEE Trans. Microw. Theory Tech., vol. 54, no.9, pp. 3453-3461, Sept. 2006.
[8] O. Vaudescal, B. Lefebvre, A. M. Couturier, R. Sevin, C. Dourlens, and P. Quenlin, “A highly integrated MMIC chipset for 28 GHz LMDS application,” European Microwave Conference, 2000, pp. 1-3, Oct. 2000.
[9] S. J. Mohan, E. Convert, P. T. Beasly, A. Besseoulin, A. Fatorini, M. G. McCulloch, B. G. Lawrence, and J. T. Harvey, “Broadband integrated millimeter-wave up- and down-converter GaAs MMICs,” IEEE Trans. Microw. Theory Tech., vol. 54, no.5, pp. 2050-2060, May 2006.
[10] T. Kaho, Y. Yamaguchi, K. Uehara, S. Nagamine, Y. Toriyama, and T. Taniguchi, “A highly integrated quasi-millimeter wave receiver chip using 3D-MMIC Technology,” Proceedings of the 2nd European Microwave Integrated Circuits Conference, pp. 12-15, Oct. 2007.
Chapter 5
[1] A. Bassemoulin et al, “1-W Broad Ka-band Ultra Small High Power Amplifier MMICs Using 0.25 μm GaAs PHEMTs”, 2002 IEEE GaAs Digest, pp 40-43.
[2] Shouki Chen et al, “ A Balanced 2W Compact PHEMT Power Amplifier MMIC for Ka-band Application”, 2003 IEEE MTT-S Digest, pp 847-850.
[3] M. K. Siddiqui, Arvind K. Sharma et al, “A High-Power and High-Efficiency Monolithic Power Amplifier at 28 GHz for LMDS Applications”, IEEE Trans on Microw Theory and Techniques, vol. 46, no.12, 1998, pp 2226-2232.
[4] J. A. Lester et al, “Highly Efficient Compact Q-band MMIC Power Amplifier Using 2-mill Substrate and Partially Matched Output’, IEEE 1996 Microwave and Millimeter-Wave Monolithic Circuits Symposium, pp 171-173.
[5] M. D. Biedenbinder, “A Power HEMT Production Process for High-Efficiency Ka-band Power Amplifier”, IEEE GaAs IC Symposium, 1993, pp 341-344.
[6] R. Gajdharsing, “PA technologies and marckets for compound semiconductors”, IEEE CSICS Symposium, Oct. 2004, PA short course, pp 1-43.
[7] M. Siddiqui, “MMW power amplifiers”, IEEE CSICS Symposium, Oct. 2004, PA short course, pp 1-46.
[8] S. A. Siddiqui, J. M. Carroll, “Compact 1-Watt Power Amplifier MMICs for Ka-band Application”, 22nd 2000 IEEE GaAs IC Symp. Dig., pp. 223-226.
[9] A. Bessemoulin et al., “ Ka-Band High Power and Driver MMIC Amplifiers using GaAs PHEMTs and Coplanar Waveguides”, IEEE Microwave and Guided Wave Letters, Vol. 10, No. 11, Dec., pp. 534-536, 2000.
[10] J. J. Komiak, W. Kong, P.C. Chao, and K. Nichols, “3-Watt Ka-Band MMIC HPA and Driver Amplifier Implemented in fully Selective 0.15um Power PHEMT process”, IEEE MTT-S Int. Microwave Symp. Dig., 1998, pp. 45-48.
[11] Kris Kong, David Boone, Marcus King, Bruce Nguyen, Mike Vernon, Elias Reese, and Gailon Brehm, “A Compact 30 GHz High Power Amplifier (3W CW) in chip and Packaged Form”, IEEE GaAs Digest, 2002, pp. 37-39.
[12] M. Komaru et al., “1Watt compact Ka-Band MMIC Power Amplifiers Using Lumped Element Matching Circuits”, 1998 MTT-S Digest, pp. 1659-1662.
[13] Rudy Emrick, “monolithic 6W Ka-Band Power Amplifier”, 2001 IEEE MTT-S Digest, pp. 527-529.
[14] Mansoor K. Siddiqui, Arvind K. Sharma, Leonardo G. Callejo, and Richard Lai, “A High Power Broadband Monolithic Power Amplifier for Ka-Band Ground Terminals, 1999 IEEE MTT-S Dig., pp. 951-954.
[15] A. Platzker, W. Struble, “A Rigorous Yet Simple Method for Determining stability of Linear N-port Networks”, 15th IEEE GaAs IC Symp. Dig. 1993, pp. 251-154.
[16] Steve C. Cripps, RF power amplifiers for wireless communications, Artech House, Boston, 1999.
[17] Gonzalez. Guillermo, Microwave transistor amplifiers: analysis and design, Prentice Hall, Upper Saddle River, NJ, 1997.
[18] Peter L. D Abrie, Design of RF and microwave amplifiers and oscillators, Artech House, Boston, 1999.
[19] Kenington Peter B, High linearity RF amplifier design, Artech House, Boston, 2000.
Chapter 6
[1] C.-Y. Chen and C.-Y. Hsu, “A simple and effective method for microstrip dual-band filters design,” IEEE Microwave Wireless Compon Lett 16 (2006), 246-248.
[2] M.-I. Lai and S.-K. Jeng, “Compact microstrip dual-band bandpass filters design using genetic-algorithm techniques,” IEEE Trans Microwave Theory Tech 54 (2006), 160-168.
[3] S. Sun and L. Zhu, “Compact dual-band microstrip bandpass filter without external feed,” IEEE Microwave Wireless Compon Lett 15 (2005), 644-646.
[4] J. Wang, Y.-X. Guo, B.-Z. Wang, L. C. Ong, and S. Xiao, “Compact and low loss dualband bandpass filter using pseudo-interdigital stepped impedance resonators for WLANs,” IEEE Microwave Wireless Compon Lett 17 (2007), 187-189.
[5] C.-Y. Chen, C.-Y. Hsu, and H.-R. Chuang, “Design of miniature planar dualband filter using dual-feeding structures and embedded resonators,” IEEE Microwave Wireless Compon Lett 16 (2006), 669-671.
[6] H.-K. Jhuang, C.-H. Lee, and C.-I. G. Hsu, “Design of compact microstrip dual band bandpass filters with λ/4 stepped-impedance resonators,” Microwave Opt Technol Lett, 49 (2007), 164-168.
[7] S. Sun and L. Zhu, “Novel design of dualband microstrip bandpass filters with good in-between isolation,” Proc. Asia Pacific Microwave Conference, 2005, 1-4.
[8] J. Wang, Y.-X. Guo, B.-Z. Wang, L. C. Ong, and S. Xiao, “High-selectivity dual-band stepped-impedance bandpass filter,” Electron. Lett., vol. 42, no.9, pp. 1-2, Apr. 2006.
[9] Y. P. Zhang and M. Sun, “Dual-band microstrip bandpass filter using stepped-impedance resonator with new coupling schemes,” IEEE Trans. Microw. Theory Tech., vol. 54, no.10, pp. 3779-3785, Oct. 2006.
[10] M. Makimoto and S. Yamashita, “Microwave resonators and filters for wireless communications,” Springer Series in Advanced Micro- electronics, 2001.
[11] M.-H. Weng, H.-W. Wu, and Y.-K. Su, “Compact and low loss dual band bandpass filter using pseudo-interdigital stepped impedance resonators for WLANs,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 3, pp. 187-189, March. 2007.
[12] M. B. Bazdar, A.R. Djordjevic, R.F. Harrington, and T. K. Sarkar, "Evaluation of quasi-static matrix parameters for multiconductor transmission lines using Galerkin's method," IEEE Trans. Microw. Theory Tech., vol. MTT-42, July 1994, pp. 1223-1228.
Chapter 7
[1] Federal Communications Commissions, “Revision of part 15 of the commission’s rules regarding ultra-wide band transmission systems,” at http://ftp.fcc.gov/oet/info/rules/part15, Aug. 14 2006.
[2] A. Saito., H. Harada, and A. Nishikata, “Development of bandpass filter for ultra wideband (UWB) communication systems,” IEEE Conf. on Ultra Wideband Systems and Technologies, 16-19 Nov. 2003, pp. 76-80.
[3] H. Ishida and K. Araki, “Design and analysis of UWB bandpass filter with ring filter,” IEEE MTT-S Digest, 2004, pp. 1307-1310.
[4] H. Wang and L. Zhu, “Aperture-backed microstrip line multiple mode resonator for design of a novel UWB bandpass filter,” in Proc. 2005 Asia-Pacific Microw. Conf., Dec. 2005, vol.4, p.1606781.
[5] S. Sun and L. Zhu, “Capacitive-ended interdigital coupled lines for UWB bandpass filters with improved out-of-band performances,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 8, pp. 440-442. Aug. 2006.
[6] P. Cai, Z. Ma, X. Guan, X. Yang, Y. Kobayashi, T. Anada, and G. Hagiwara, “A compact UWB bandpass filter using two section open-circuited stubs to realize transmission zeros,” in Proc. 2005 Asia-Pacific Microw. Conf., Dec. 2005, vol.5, p. 1607075.
[7] K. Li, D. Kurita, and T. Matsui, “A novel UWB bandpass filter and its application to UWB pulse generation,” IEEE Int. Conf. on Ultra- wideband, 2005, pp. 446-451.
[8] T. N. Kuo, S. C. Lin, and C. H. Chen, “Compact ultra-wideband bandpass filters using composite microstrip-coplanar-waveguide structure,” IEEE Microw. Theory Tech., vol. MTT-54, no.10, pp. 3772-3778, Oct. 2006.
[9] G. Zhang, M. J. Lancaster, F. Huang, Y. Pan, and N. Roddis, “Wideband microstrip bandpass filter for radio astronomy application,” Proceedings of the 36th European microwave conference, Sep. 2006, pp. 661-663.
[10] J.-R., Lee, J.-H. Cho, and S.-W. Yun, “New compact band pass filter using microstrip λ/4 resonators with open stub inverter,” IEEE Microw. Guided Wave Lett., vol. 10, no. 12, pp. 526-527. Dec. 2000.
Chapter 8
[1] Hajime Izumi, “Electromagnetic coupled power divider using parasitic element,” Asia pacific Microwave Conference, Dec. 2000, pp. 233-236.
[2] Yukihiro Tahara, Hideyuki Oh-hashi, Moriyasu Miyazaki, and Shigeru Makino, “A broadband three-way tapered-line power divider with several strip resistors,” European Microwave Conference, Oct. 2005, pp.1-4.
[3] Dimitrios Pavlidis and Hans I. Hartnagel, “The Design and Performance of Three-Line Microstrip Couplers,” IEEE Trans. Microwave Theory and Tech., vol. MTT-24, N0. 10, 1976, pp. 631-640.
[4] D. Kajfez and B. Sarma Vidula, “Design equations for symmetric microstrip DC blocks,” IEEE Trans. Microwave Theory and Tech., vol. MTT-28, N0. 9, 1980, pp. 974-981.
[5] D. M. Pozar, Microwave Engineering, Third edition, John Wiley and Sons.