| 研究生: | 何國聖 Ho, Kuo-Sheng | 
|---|---|
| 論文名稱: | 金屬奈米結構的電漿模態耦合效應 Plasmonic Mode Coupling in Metallic Nanostructures | 
| 指導教授: | 張世慧 Chang, Shih-Hui | 
| 學位類別: | 碩士 Master | 
| 系所名稱: | 理學院 - 光電科學與工程學系 Department of Photonics | 
| 論文出版年: | 2013 | 
| 畢業學年度: | 101 | 
| 語文別: | 英文 | 
| 論文頁數: | 66 | 
| 中文關鍵詞: | Plasmonic Hybridization 、Fano 共振 | 
| 外文關鍵詞: | Plasmonic Hybridization, Fano Resonance | 
| 相關次數: | 點閱:62 下載:3 | 
| 分享至: | 
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 | 
在本論文中,我們用Finite-Difference Time-Domain (FDTD)示範了兩種在金屬奈米結構下藉由模態耦合所產生的特性。第一種是在Metal-Isolator-Metal (MIM) 結構下,因為相位延遲和兩種單一模態間耦合而產生的Plasmonic Hybridization。另一種是藉由破壞H型的結構對稱性,在Bright 與 Dark 模態間所產生的Fano interference。
在Plasmonic Hybridization中,我們成功的利用幾何大小與介電常數的改變,使得散射與吸收共振波長產生位移。並且藉由共振波長位移的特性,討論應用在Two Photon雷射系統中的可行性。另外在H型的奈米結構中,我們成功驗證了在反射頻譜中產生的不對稱共振就是所謂的 Fano resonance,並且利用對於環境的敏感度討論其做為偵測器的可行性。 
In this thesis, we demonstrate two different mechanisms of mode couplings phenomena in metallic nanostructures using Finite-Difference Time-Domain (FDTD) method. One is the hybridization between two elementary modes in the Metal-Isolator-Metal (MIM) nanostructure due to the plasmonic coupling and phase retardation. Another one is Fano interference between the bright and dark modes on the symmetric breaking H shape nanostructure.
In the approach of plasmonic hybridization, we successfully shift the resonant wavelength by varying the geometry and dielectric constant. Based on the shifting of the resonant wavelength of scattering and absorption, we can apply this characteristic in the two photon laser application. In the H shape nanostructure, we verify the asymmetric resonance spectrum which can be recognized as Fano resonance and discuss its sensing application for detecting the dielectric environment.
[1] Mie, G. “Articles on the optical characteristics of turbid tubes, especially colloidal metal solutions,” Ann Phys-Berlin, 25, 377-445 (1908).
[2] Maier, S. A . Plasmonics: Fundamentals and Applications. Springer, 15 (2007).
[3] Prodan, E., Radloff, C., Halas, N. J. & Nordlander, P. “A hybridization model for the plasmon response of complex nanostructures,” Science, 302, 419-422 (2003).
[4] Duraiswamy, S. & Khan, S. A. “Plasmonic Nanoshell Synthesis in Microfluidic Composite Foams,” Nano Letters, 10, 3757-3763 (2010).
[5] Liu, N. & Giessen, H. “ Coupling Effects in Optical Metamaterials,” Angewandte Chemie-International Edition, 49, 9838-9852 (2010).
[6] Dolling, G., Enkrich, C., Wegener, M., Zhou, J. F. & Soukoulis, C. M. “Cut-wire pairs and plate pairs as magnetic atoms for optical metamaterials,” Optics Letters, 30, 3198-3200 (2005).
[7] Gallinet, B. & Martin, O. J. F. “Influence of Electromagnetic Interactions on the Line Shape of Plasmonic Fano Resonances,” Acs Nano, 5, 8999-9008 (2011).
[8] Kennedy, D. C. et al. “Nanoscale Aggregation of Cellular beta(2)-Adrenergic Receptors Measured by Plasmonic Interactions of Functionalized Nanoparticles,” Acs Nano, 3, 2329-2339 (2009).
[9] Berenger, J. P., “A perfectly matched layer for the absorption of electromagentic waves, ” J,Comp. Phys, 114, 185-200 (1994).
[10] Katz, D. S., E. T. Thiele, and A. Taflove, “Validation and extension to three dimensions of the Berenger PML absorption boundary condition for FDTD meshes, ” IEEE Microwave Guided Wave Lett., 4, 268-270 (1994).
[11] Moskovits, M., Tay, L. L., Yang, J. & Haslett, T. in “Optical Properties of Nanostructured Random Media,” Topics in Applied Physics, 82, 215-226 (2002).
[12] Aroca, R. & Price, B. “A new surface for surface-enhanced infrared spectroscopy: Tin island films,” Journal of Physical Chemistry B, 101, 6537-6540 (1997).
[13] Nordlander, P., Oubre, C., Prodan, E., Li, K. & Stockman, M. I. “ Plasmon hybridizaton in nanoparticle dimers,” Nano Letters, 4, 899-903 (2004).
[14] Park, T.-H. & Nordlander, P. “On the nature of the bonding and antibonding metallic film and nanoshell plasmons,” Chemical Physics Letters, 472, 228-231 (2009).
[15] Juluri, B. K., Huang, J. & Jensen, L. “Extinction, Scattering and Absorption efficiencies of single and multilayer nanoparticles,” http://nanohub.org/resources/8228 (2010).
[16] Fano, U. “Effects of Configuration Interaction on Intensities and Phase Shifts,” Phys Rev, 124, 1866-& (1961).
[17] Zheludev, N. I., Prosvirnin, S. L., Papasimakis, N. & Fedotov, V. A. “Lasing spaser,” Nat Photonics, 2, 351-354 (2008).
[18] Mirin, N. A., Bao, K. & Nordlander, P. “Fano Resonances in Plasmonic Nanoparticle Aggregates,” J Phys Chem A, 113, 4028-4034 (2009).
[19] Verellen, N. et al. “Fano Resonances in Individual Coherent Plasmonic Nanocavities,” Nano Letters, 9, 1663-1667 (2009).
[20] Samson, Z. L. et al. “Metamaterial electro-optic switch of nanoscale thickness,” Appl Phys Lett, 96, 143105 (2010).
[21] Papasimakis, N., Fedotov, V. A., Zheludev, N. I. & Prosvirnin, S. L. “Metamaterial Analog of Electromagnetically Induced Transparency,” Phys Rev Lett, 101, 253903 (2008).
[22] Zhang, S., Genov, D. A., Wang, Y., Liu, M. & Zhang, X. “Plasmon-induced transparency in metamaterials,” Phys Rev Lett, 101, 047401 (2008).
[23] Zentgraf, T. et al. “Babinet's principle for optical frequency metamaterials and nanoantennas,” Phys Rev B, 76, 033407 (2007).
[24] Boller, K. J., Imamoglu, A. & Harris, S. E. “Observation of electromagnetically induced transparency,” Phys Rev Lett, 66, 2593-2596 (1991).
[25] Hao, F. et al. “Symmetry Breaking in Plasmonic Nanocavities: Subradiant LSPR Sensing and a Tunable Fano Resonance,” Nano Letters, 8, 3983-3988 (2008).