研究生: |
黃丞毅 Huang, Cheng-Yi |
---|---|
論文名稱: |
對寬能隙半導體氧化鎵(β-Ga2O3)進行摻雜應用於電子元件之研究 Electronic Components Research on the Doping of Wide Band-gap Semiconductor β-Ga2O3 |
指導教授: |
洪茂峰
Houng, Mau-Phon |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 中文 |
論文頁數: | 111 |
中文關鍵詞: | 液相沉積法(LPD) 、GaOOH 粉末 、F 摻雜 β-Ga2O3薄膜 、F 摻雜 β-Ga2O3/p+-Si 二極體 、氧化銦鎵 、薄膜電晶體 |
外文關鍵詞: | Liquid phase deposition (LPD), GaOOH powder, F-doped β-Ga2O3 films, F-doped β-Ga2O3/p+-Si diodes, indium-gallium oxide, thin-film transistor |
相關次數: | 點閱:139 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
這項研究的目的是研究一種低成本的液相沉積(LPD)方法來製備氧化鎵(β-Ga2O3)薄膜,該方法具有無真空且易於製造的優點,使得該方法適用於大面積製造。首先,採用 LPD 方法在 pH 值為 8 且溫度為 80°C的條件下沉澱 GaOOH 顆粒,從而成為氧化鎵(β-Ga2O3)薄膜的前驅體。同時,將濃度分別為 0.1 M,0.3 M 和 0.5 M 的氟化銨(NH4F)添加到溶液中,以形成氟摻雜(F-doped)的 GaOOH。然後,透過配備在場發射掃描式電子顯微鏡(FESEM)上的能量分散X射線光譜儀(EDS)分析了元素F,Ga 和 O 的沉澱 F 摻雜GaOOH 粉末,我們發現 F 元素比例隨著 NH4F濃度的增加而增加。接下來,將沉積的薄膜在 900℃下退火 4 小時以將F 摻雜的 GaOOH 轉變成 F 摻雜的 β-Ga2O3。再次使用 EDS 分析 F 摻雜的 β-Ga2O3薄膜,我們發現 F 元素比例也隨著 NH4F 濃度的增加而增加。此外,我們進行 XPS 分析以間接證明 F 摻雜的 β-Ga2O3 薄膜中觀察到F-離子的存在。最後,用不同濃度的 F 摻雜 β-Ga2O3 薄膜製作 F 摻雜β-Ga2O3/p+-Si 接面二極體。其 J-V(電流密度-電壓)特性得到了很好的研究。研究證明,該方法藉由提高 NH4F 的濃度來改善氧化鎵薄膜的電性能。同時,該方法還顯著改善了 F 摻雜 β-Ga2O3/p+-Si接面的整流特性。第二部分是利用射頻磁控濺鍍(RF magnetron Sputter)製備了氧化銦
鎵薄膜應用於薄膜電晶體。氧化銦鎵薄膜的透射率在可見光區域內是大於 70%。經由霍爾效應(Hall effect)量測,In0.8Ga1.2O3(In2O3:Ga2O3=40:60)薄膜的載子濃度為2.31×1018cm-3,電阻率為 0.982Ω.cm,載子遷移率為2.76cm2V-1S-1。在暗室中測量氧化銦鎵薄膜電晶體(閘極長度為 100μm,閘極寬度為 1000μm)的轉移特性曲線,其開關比為 2.44×102,次臨界擺幅(SS)為 1.786V/decade,介面缺陷密度(Dit)為2.082×1012cm-2。
The purpose of this research is to investigate a low-cost Liquid Phase Deposition (LPD) method for preparing gallium oxide (β-Ga2O3) films, which possesses an advantage of the non-vacuum and easy-fabrication process, making the approach suitable for large-area manufacture. Firstly, implemented the LPD method to precipitate the GaOOH particles under the pH value of 8 and at 80°C, which became the precursor of gallium oxide (β-Ga2O3) films. Ammonium fluoride (NH4F) with concentrations of 0, 0.1 M, 0.3 M, and 0.5 M were then added into the solution to form fluorine-doped (F-doped) GaOOH. Afterward, analyzed the precipitation F-doped GaOOH powders by the Energy-dispersive X-ray Spectroscopy (EDS) equipped on a Field-Emission Scanning Electron Microscopy
(FESEM) for elemental F, Ga, and O, and we found that the F ions’ concentration
increased with the NH4F concentration. Next, annealed the deposited films at 900°C for four hours to transform the F-doped GaOOH composition into F-doped β-Ga2O3composition. Used EDS again to analyze the F-doped β-Ga2O3 films, and we discovered that their F ions’ concentration also increased with the NH4F concentration. Further, we conduct XPS analysis to prove the existence of Fions in the F-doped β-Ga2O3 films. Finally, the F-doped β-Ga2O3 films of different concentrations were used to fabricate the F-doped β-Ga2O3/p+-Si junction diodes; their J-V (current-voltage) properties were well investigated. The research has proven that the approach can increase NH4F concentration and the electrical performance of F-doped gallium oxide. Meanwhile, the method has also improved the rectification characteristics of the F-doped β-Ga2O3/p+-Si junction significantly. The second part utilizes an RF magnetron sputter to prepare indium-gallium oxide films for the use of thin-film transistor. The transmittance of the indium-gallium oxide in the visible spectrum is larger than 70%. With the measurement of Hall Effect, the carrier concentration of In0.8Ga1.2O3(In2O3:Ga2O3 = 40:60) is 2.31×1018 cm-3, the resistivity is 0.982Ω.cm, and the mobility is 2.76cm2V-1S-1. After measuring the transfer curve of IGO-TFT in a darkroom (with 100 μm gate length and 1,000 μm gate width), the On/Off ratio is 2.44×102, the Subthreshold Swing (SS) is 1.786V/decade, and the Interface Trap Density (Dit) is 2.082×1012cm-2.
[1]https://technews.tw/2019/10/02/trendforce-releases-2020-top-10-technology-trends/
[2]M. Higashiwaki, K. Sasaki, H. Murakami, Y. Kumagai, A. Koukitu, A. Kuramata, T. Masui, and S. Yamakoshi, “Recent progress in Ga2O3 power devices”, Semicond. Sci. Technol. 31, 034001(2016)
[3]A. Bhattacharyya, P. Ranga, M. Saleh, S. Roy, M. A. Scarpulla, K. G. Lynn, and S. Krishnamoorthy, “Schottky Barrier Height Engineering in β-Ga2O3 Using SiO2 Interlayer Dielectric”, IEEE J Electron Devi. 8, 286-294(2020)
[4]K. Sasaki, A. Kuramata, T. Masui, E. G. Vı´llora, K. Shimamura, and S. Yamakoshi, “Device-Quality β-Ga2O3 Epitaxial Films Fabricated by Ozone Molecular Beam Epitaxy”, Appl. Phys. Exp. 5, 035502(2012)
[5]M. Higashiwaki, K. Sasaki, A. Kuramata, T. Masui, and S. Yamakoshi, “Gallium oxide (Ga2O3) metal-semiconductor field-effect transistors on single-crystal β-Ga2O3 (010) substrates”, Appl. Phys. Lett. 100, 013504(2012)
[6]Z. Guo, A. Verma, X. Wu, F. Sun, A. Hickman, T. Masui, A. Kuramata, M. Higashiwaki, D. Jena, and T. Luo, “Anisotropic thermal conductivity in single crystal β-gallium oxide”, Appl. Phys. Lett. 106, 111909(2015)
[7]M. Handwerg, R. Mitdank, Z Galazka and S. F. Fischer, “Temperature-dependent thermal conductivity in Mg-doped and undoped β-Ga2O3 bulk-crystals”, Semicond. Sci. Technol. 30, 024006(2015)
[8]M. D. Santia, N. Tandon, and J. D. Albrecht, “Lattice thermal conductivity in β-Ga2O3 from first principles”, Appl. Phys. Lett. 107, 041907(2015)
[9]R. Roy, V. G. Hill, and E. F. Osborn, “Polymorphism of Ga2O3 and the System Ga2O3—H2O”, J. Am. Chem. Soc., 74(3), 719-722(1952)
[10]H. H. Tippins, “Optical Absorption and Photoconductivity in the Band Edge of β−Ga2O3”, Phys. Rev. 140, A316(1965)
[11]H. Y. Playford, A. C. Hannon, E. R. Barney, and R. I. Walton, “Structures of uncharacterized polymorphs of gallium oxide from total neutron diffraction”, Chem. Eur. J. 19, 2803-2813(2013)
[12] S.-D. Lee, Y. Ito, K. Kaneko, and S. Fujita, “Enhanced thermal stability of alpha gallium oxide films supported by aluminum doping”, Jpn J Appl Phys 54, 030301(2015)
[13]N. Ueda, H. Hosono, R. Waseda, and H. Kawazoe, “Synthesis and control of conductivity of ultraviolet transmitting β-Ga2O3 single crystals”, Appl. Phys. Lett. 70, 3561(1997)
[14]J. B. Varley, J. R. Weber, A. Janotti, and C. G. Van de Walle, “Oxygen vacancies and donor impurities in β-Ga2O3”, Appl. Phys. Lett. 97, 142106(2010)
[15]S. Müller, H. von Wenckstern, D. Splith, F. Schmidt, and M. Grundmann, “Control of the conductivity of Si-doped β-Ga2O3 thin films via growth temperature and pressure”, Phys. Status Solidi A, 211(1), 34-39(2014)
[16]E. Ahmadi, O. S. Koksaldi, S. W. Kaun, Y. Oshima, D. B. Short, U. K. Mishra, and J. S. Speck, “Ge doping of β-Ga2O3 films grown by plasma-assisted molecular beam epitaxy”, Appl. Phys. Express 10, 041102(2017)
[17]N. Suzuki, S. Ohira, M. Tanaka, T. Sugawara, K. Nakajima, and T. Shishido, “Fabrication and characterization of transparent conductive Sn‐doped β‐Ga2O3 single crystal”, Phys. Stat. Sol. (c), 4(7), 2310-2313(2007)
[18]Z. Yinnu, and Y. Jinliang, “First-principles study of n-type tin/fluorine co-doped beta gallium oxides”, J. Semicond. 36, 082004(2015)
[19]S. I. Stepanov, V. I. Nikolaev, V. E. Bougrov and A. E. Romanov, “GALLIUM OXIDE: PROPERTIES AND APPLICATIONS-A REVIEW”, Rev. Adv. Mater. Sci. 44, 63-86(2016)
[20]S. Kumar and R. Singh, “Nanofunctional gallium oxide (Ga2O3) nanowires/nanostructures and their applications in nano-devices”, Phys. Status Solidi RRL, 7(10), 781-792(2013)
[21]Z. Galazka, K. Irmscher, R. Uecker, R. Bertram, M. Pietsch, A. Kwasniewski, M. Naumann, T. Schulz, R. Schewski, D. Klimm, and M. Bickermann, “On the bulk β-Ga2O3 single crystals grown by the Czochralski method”, J. Cryst. Growth 404, 184-191(2014)
[22]H. Aida, K. Nishiguchi, H. Takeda, N. Aota, K. Sunakawa, and Y. Yaguchi, “Growth of β-Ga2O3 single crystals by the edge-defined, film fed growth method”, Jpn J Appl Phys, 47(11), 8506(2008)
[23]S. Morimoto, H. Nishinaka, and M. Yoshimoto, “Growth and characterization of F-doped α-Ga2O3 thin films with low electrical resistivity”, Thin Solid Films 682, 18-23(2019)
[24]Y. Lv, J. Ma, W. Mi, C. Luan, Z. Zhu, and H. Xiao, “Characterization of β-Ga2O3 thin films on sapphire (0001) using metal-organic chemical vapor deposition technique”, Vacuum, 86(12), 1850-1854(2012)
[25]M. Fleischer, W. Hanrieder, and H. Meixner, “Stability of semiconducting gallium oxide thin films”, Thin Solid Films 190, 93-102(1990)
[26]D. W. Choi, K. -B. Chung, and J. -S. Park, “Low temperature Ga2O3 atomic layer deposition using gallium tri-isopropoxide and water”, Thin Solid Films 546, 31-34(2013)
[27]L. M. Garten, A. Zakutayev, J. D. Perkins, B. P. Gorman, P. F. Ndione, and D. S. Ginley,“Structure property relationships in gallium oxide thin films grown by pulsed laser deposition”, MRS Commun 6, 348-353(2016)
[28]M. F. Al-Kuhaili, S. M. A. Durrani, and E. E. Khawaja, “Optical properties of gallium oxide films deposited by electron-beam evaporation”, Appl. Phys. Lett. 83, 4533(2003)
[29]L. S. Reddy, Y. H. Ko, and J. S. Yu, “Hydrothermal Synthesis and Photocatalytic Property of β-Ga2O3 Nanorods”, Nanoscale Res. Lett. 10, 364(2015)
[30]Y. S. Hsieh, C. Y. Li, C. M. Lin, N. F. Wang, J. V. Li, and M. P. Houng, “Investigation of metal-insulator-semiconductor diode with alpha-Ga2O3 insulating layer by liquid phase deposition”, Thin Solid Films 685, 414-419(2019)
[31]M. Fleischer, J. Giber, and H. Meixner, “H2-Induced Changes in Electrical Conductance of β-Ga2O3 Thin-Film Systems”, Appl. Phys. A 54, 560-566(1992)
[32]M. Ogita, K. Higo, Y. Nakanishi, and Y. Hatanaka, “Ga2O3 thin film for oxygen sensor at high temperature”, Appl. Surf. Sci. 175-176, 721-725(2001)
[33]B. Zhao, F. Wang, H. Chen, Y. Wang, M. Jiang, X. Fang, and D. Zhao, “Solar-Blind Avalanche Photodetector Based On Single ZnO–Ga2O3 Core–Shell Microwire”, Nano Lett. , 15(6), 3988-3993(2015)
[34]L. Li, W. Wei, and M. Behrens, “Synthesis and characterization of α-, β-, and γ-Ga2O3 prepared from aqueous solutions by controlled precipitation”, Solid State Sci. 14, 971-981(2012)
[35]K. Girija, S. Thirumalairajan, G. S. Avadhani, D. Mangalaraj, N. Ponpandian, and C. Viswanathan, “Synthesis, morphology, optical and photocatalytic performance of nanostructured β-Ga2O3”, Mater. Res. Bull. 48, 2296-2303(2013)
[36]H. -S. Qian, P. Gunawan, Y. -X. Zhang, G. -F. Lin, J. -W. Zheng, and R. Xu, “Template-Free Synthesis of Highly Uniform α-GaOOH Spindles and Conversion to α-Ga2O3 and β-Ga2O3”, Cryst. Growth Des., 8(4), 1282-1287(2008)
[37]X. Xue, R. L. Penn, E. R. Leite, F. Huang, and Z. Lin, “Crystal growth by oriented attachment: kinetic models and control factors”, CrystEngComm 16, 1419(2014)
[38]莊達人, “VLSI 製造技術”, 高立圖書股份有限公司, 1995
[39]H. Zhang, J. Deng, Y. He, P. Duan, X. Liang, R. Li, C. Qin, Z. Pan, Z. Bai, and J. Wang, “Effects of annealing and Nb doping on the electrical properties of p-Si/n-β-Ga2O3:Nb heterojunction”, J. Mater. Sci. Mater. Electron. 29, 19028-19033(2018)
[40]F. -Y. Zhu, Q. -Q. Wang, X. -S. Zhang, W. Hu, X. Zhao and H. -X. Zhang, “3D nanostructure reconstruction based on the SEM imaging principle, and applications”, Nanotechnology 25, 185705(2014) [41] M. Uo, T. Wada, and T. Sugiyama, “Applications of X-ray fluorescence analysis (XRF) to dental and medical specimens”, Jpn Dent Sci Rev 51, 2-9(2015)
[42]E. B. Shaik, C. S. Kamal, K. Srinivasu, B. V. N. Kumar, P. K. Balla, R. D. K. Swamy, and K. R. Rao, “Optical insights of indium‑doped β–Ga2O3 nanoparticles and its luminescence mechanism”, J. Mater. Sci. Mater. Electron. 31, 6185-6191(2020)
[43]C. Yang, J. Xu, L. Yan, C. Cai, and W. Liu, “Effects of depositing temperature on structural, optical and laser-induced damage properties of Ga2O3 films deposited by electronic beam evaporation”, Opt Laser Technol 113, 192-197(2019)
[44]J. Zhang, Z. Liu, C. Lin, and J. Lin, “A simple method to synthesize β-Ga2O3 nanorods and their photoluminescence properties”, J. Cryst. Growth 280, 99-106(2005)
[45]S. Wang, K. Chen, H. Zhao, C. He, C. Wu, D. Guo, N. Zhao, G. Ungar, J. Shen, X. Chu, P. Li, and W. Tang, “β–Ga2O3 nanorod arrays with high light-to electron conversion for solar-blind deep ultraviolet photodetection”, RSC Adv. 9, 6064(2019)
[46]W. -L. Huang, M. -H. Hsu, S. -P. Chang, S. -J. Chang, and Y. -Z. Chiou, “Indium Gallium Oxide Thin Film Transistor for Two-Stage UV Sensor Application”, ECS J. Solid State Sci. Technol. 8, Q3140(2019)
[47]E. Fortunato, P. Barquinha, and R. Martins, “Oxide Semiconductor Thin-Film Transistors: A Review of Recent Advances”, Adv. Mater., 24(22), 2945-2986(2012)
[48]J. F. Conley, “Instabilities in Amorphous Oxide Semiconductor Thin-Film Transistors”, IEEE Trans Device Mater Reliab, 10(4), 460-475(2010)
[49]C. P. Yang, S. J. Chang, T. H. Chang, C. Y. Wei, Y. M. Juan, C. J. Chiu, and W. Y. Weng, “Thin-Film Transistors With Amorphous Indium–Gallium-Oxide Bilayer Channel”, IEEE Electron Device Lett, 38(5), 572-575(2017)
[50]J. -H. Park, R. McClintock, and M. Razeghi, “Ga2O3 metal-oxide-semiconductor field effect transistors on sapphire substrate by MOCVD”, Semicond. Sci. Technol., 34(8), 08LT01(2019)
[51]M. Higashiwaki, K. Sasaki, T. Kamimura, M. H. Wong, D. Krishnamurthy, A. Kuramata, T. Masui, and S. Yamakoshi, “Depletion-mode Ga2O3 metal-oxide-semiconductor field-effect transistors on β-Ga2O3(010) substrates and temperature dependence of their device characteristics”, Appl. Phys. Lett. 103, 123511(2013)
[52]S. J. Young, C. H. Hsiao, S. J. Chang, L. W. Ji, T. H. Meen, T. P. Chen, K. W. Liu, and K. J. Chen, “High temperature characteristics of ZnO-based MOS-FETs with a photochemical vapor deposition SiO2 gate dielectric”, J Phys Chem Solids, 72(2), 147-149(2011)
[53]H. Q. Chiang, D. Hong, C. M. Hung, R. E. Presley, J. F. Wager, C.-H Park, D. A. Keszler, and G. S. Herman, “Thin-film transistors with amorphous indium gallium oxide channel layers”, J. vac. sci. technol., B, Microelectron. nanometer struct. process. meas.phenom. 24, 2702(2006)
[54]I. López, A. D. Utrilla, E. Nogales, B. Méndez, J. Piqueras, A. Peche, J. R. -Castellanos, and J. M. González-Calbet, “In-Doped Gallium Oxide Micro- and Nanostructures: Morphology, Structure, and Luminescence Properties”, J. Phys. Chem. C, 116(6), 3935-3943(2012)
[55]J. Sheng, E. J. Park, B. Shong, and J.-S. Park, “Atomic Layer Deposition of an Indium Gallium Oxide Thin Film for Thin-Film Transistor Applications”, ACS Appl. Mater. Interfaces, 9(28), 23934-23940(2017)
[56]L. Zhang, D. Zhu, S. Han, Y. Lu, M. Fang, W. Liu, P. Cao, and W. Xu, “Aqueous solution deposition of amorphous gallium tin oxide for thin-film transistors applications”, Ceram. Int. 46, 19557-19563(2020)
[57]S. H. Mohamed, “Transparent conductive gallium-doped indium oxide nanowires for optoelectronic applications”, J Korean Phys Soc, 62(6), 902-905(2013)
[58]H. Shen, Y. Yin, K. Tian, K. Baskaran, L. Duan, X. Zhao, and A. Tiwari, “Growth and characterization of β-Ga2O3 thin films by sol-gel method for fast-response solar-blind ultraviolet photodetectors”, J. Alloys Compd. 766, 601-608(2018)