簡易檢索 / 詳目顯示

研究生: 黃麗敏
Huang, Li-Min
論文名稱: 阿拉伯芥GDSL型酯解酶/脂肪酶之全基因分析與功能特性研究
Genome-wide analysis and functional characterization of GDSL-type esterases/lipases in Arabidopsis
指導教授: 蕭介夫
Shaw, Jei-Fu
陳榮芳
Chen, Long-Fang O.
學位類別: 博士
Doctor
系所名稱: 生物科學與科技學院 - 生物科技與產業科學系
Department of Biotechnology and Bioindustry Sciences
論文出版年: 2017
畢業學年度: 106
語文別: 英文
論文頁數: 161
中文關鍵詞: 阿拉伯芥酯解酶脂肪酶逆境葡萄糖軟腐病
外文關鍵詞: Arabidopsis, GDSL, lipase, esterase, stress
相關次數: 點閱:113下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • GDSL型酯解酶/脂肪酶為一群具有多功能特性的水解酵素,廣泛存在微生物與植物之中,在醫藥、食品及生物功能上提供很重要的應用價值,本研究從模式植物阿拉伯芥中定義出105個 GDSL型酯解酶/脂肪酶基因(AtGELP1-105),結合演化、基因表現及蛋白結構分析進行推測此基因家族可能具有之功能特性,並利用T-DNA插入剔除或過量表現特定AtGELP基因進行生理功能的探討,從SALK種源庫獲得199株可能插入AtGELP基因的突變株,研究結果確認出123株分別插入71 個AtGELP基因,其中88株確認分別為54個AtGELP基因剔除轉殖株。其中AtGELP72具有提升植物對高濃度葡萄糖的耐受性,且AtGELP72 經調控脂肪酸分解路徑(β-oxidation pathway)的相關因子導致種子中的脂肪酸含量及組成改變。此外,AtGELP65參與細菌性軟腐菌Pectobacterium carotovorum subsp. carotovorum的抗性反應,研究結果顯示AtGELP65經調控茉莉酸/乙烯路徑相關因子ERF1與PDF1.2的表現,提升阿拉伯芥植苗抵抗細菌性軟腐病菌的感染。本論文研究結果說明了阿拉伯芥GDSL型酯解酶/脂肪酶基因家族具非常多樣性的生理功能,包含參與高葡萄糖或高鹽逆境的反應,以及參與抗微生物病菌感染之各種生理功能。

    In this study, 105 GDSL-type esterase/lipase (AtGELP) genes were identified in Arabidopsis thaliana by conducting a comprehensive computational analysis. The phylogenetic analysis, combined with expression profiling and protein motif architectures, were used to predict the roles of AtGELP genes. To further investigate the physical roles of the AtGELP gene family, 88 AtGELP T-DNA knockout lines for 54 AtGELP genes from 199 putative SALK T-DNA mutants were successfully screened out. AtGELP72 has the function on tolerance to high glucose concentrations. Furthermore, it increased the expression of genes involved in fatty acid metabolism during seed germination and seedling development, such as COMATOSE (CTS), LACS6 and LACS7, PED1 and PNC1 which function in β-oxidation pathway controlling fatty acid degradation. AtGELP65 has the function on resistant to necrotropic bacterial pathogen, Pectobacterium carotovorum subsp. carotovorum (Pcc). AtGELP65 expression in leaves were induced by Pcc and jasmonic acid (JA), ethylene (ET) and salicylic acid (SA), known as crucial roles in pathogen response. AtGELP65 regulated the expression of ERF1 and PDF1.2, JA/ET-dependent signals, to make Arabidopsis plants more resistant to Pcc pathogen. Overall, the results suggest that the AtGELP genes have diverse physiological functions, such as affecting the early growth of seedlings and germination rate subjected to high concentrations of glucose and salt, or biotic stress responses.

    Chinese Abstract (中文摘要) ...................... I Abstract ............................... II Acknowledgements ...................... VI Table of Contents .......................... VII Contents of Tables ..................... X Contents of Figures ....................... XI Abbreviations List ......................... XIII Chapter 1 Research Background .................... 1 1-1 GDSL-type esterases/lipases .............. 1 1-2 GDSL-type esterases/lipases in plants .... 2 1-3 GDSL-type esterases/lipases in Arabidopsis..... 3 1-4 Research Objetives ....... 4 Chapter 2 Materials and Methods ......... 6 2-1 Plant materials and growth conditions ....... 6 2-2 Bioinformatic analysis ............ 8 2-3 Expression analysis of Arabidopsis GDSL-type esterase/lipase genes ........... 9 2-4 Phylogenetic analysis of GDSL-type esterases/lipases and motif search ....... 10 2-5 Isolation of genomic DNA and PCR ....... 10 2-6 Southern blot ........................ 11 2-7 RT-PCR .................................. 12 2-8 Plant transformation and GUS staining ....... 12 2-9 Quantitative real-time PCR and Statistical analysis ........................................ 15 2-10 Sequence and motif analysis of ATGELP72 ....... 16 2-11 Construction and transformation of AtGELP72 in a yeast expression system ............................ 17 2-12 Specific activity of lipase or esterase activity plate assays and protein purification .............. 17 2-13 Antibody preparation ....... 18 2-14 Hormones treatment ......... 19 Chapter 3 Genome-wild analysis of GDSL-type esterases/lipases in Arabidopsis ..... 21 3-1 Introduction ........... 21 3-2 Results .................. 23 3-3 Discussion ....................... 33 3-4 Summary ......................... 36 Chapter 4 A novel GDSL-type esterase, AtGELP72, involved in fatty acid degradation and glucose tolerance ....... 38 4-1 Introduction ........ 38 4-2 Results ...................... 42 4-3 Discussion .......... 52 4-4 Summary ............... 55 Chapter 5 AtGELP65 (GLIP4) plays a critical role in resistant to Pectobacterium carotovorum subsp. carotovorum .......... 56 5-1 Introduction ......................... 56 5-2 Results ............................. 58 5-3 Discussion ....................... 64 5-4 Summary ....................... 66 Chapter 6 Conclusions ..................... 68 References ................................ 70 Tables ...................................... 81 Figures ...................................... 113 Related Paper Publications ........... 162   Contents of Tables Table 1. Primers of AtGELPs for genomics PCR and RT-PCR ........................................ 82 Table 2. Primers of AtGELPs for overexpression and promoter construction and qRT-PCR ............................................................................................................. 88 Table 3. Annotations of Arabidopsis GDSL-type esterase/lipase family members from TAIR database .................................................................................................. 90 Table 4. Characteristics of Arabidopsis GDSL-type esterase/lipase family members ...... 94 Table 5. The putative gene structure of Arabidopsis GDSL-type esterase/lipase family members ............................................................................................................... 98 Table 6. 15 identified AtGELP family genes and 13 non-Arabidopsis GDSL orthologues or homologues ................................................................................. 103 Table 7. Characteristics of T-DNA insertion lines of AtGELP family members ............... 107 Table 8. Activity analysis of recombinant AtGELP72 enzymes from Pichia pastoris to the p-nitrophenyl butyrate in purified process ................................................. 110 Table 9. Characteristics of 24 plant GDSL esterases/lipases with known functions ......... 111   Contents of Figures Figure 1. Example of Alignment Arabidopsis GDSL-type lipases/esterases with AtGELP97 ....................................................................................................... 114 Figure 2. Chromosomal distribution and segmental duplication events for AtGELPs .......................................................................................................... 115 Figure 3. The expression patterns for AtGELP genes ...................................................... 117 Figure 4. An unrooted phylogenetic tree of AtGELPs and 13 non-Arabidopsis GDSL esterase/lipase proteins .................................................................................... 119 Figure 5. Analysis of the phylogenetic relationship and protein motif structure among the AtGELPs and plant homologues with known function .............................. 121 Figure 6. Identification of the number of T-DNA inserts for AtGELP T-DNA insetion mutants ............................................................................................................. 122 Figure 7. Analysis of AtGELP expression in AtGELP T-DNA insertion mutants ........... 125 Figure 8. An unrooted phylogenetic tree and functional analysis of AtGELP genes and plant homologues with known function .................................................... 127 Figure 9. Conditional phenotypic alterations of the AtGELP T-DNA knockout mutants in response to salt sress .................................................................................... 128 Figure 10. Conditional phenotypic alterations of the AtGELP T-DNA knockout mutants in response to Pcc ............................................................................................. 129 Figure 11. The genomic organization of ATGELP72 and structure for ATGELP72 protein .............................................................................................................. 132 Figure 12. Phylogenetic analysis of ATGELP72 protein sequence and 24 plant GDSL esterases/ lipases ............................................................................................... 133 Figure 13. Recombinant ATGELP72 proteins for lipase/esterase activity analysis .......... 134 Figure 14. The enzyme activity assay of recombinant ATGELP72 proteins ..................... 136 Figure 15. Protein motif structure and location of DELLA downregulated GDSL-type enzymes in Arabidopsis .................................................................................... 137 Figure 16. The expression pattern of ATGELP72 in Arabidopsis ..................................... 138 Figure 17. Ghenotype analysis of ATGELP72 transgenic plants ....................................... 140 Figure 18. Phenotype analysis of ATGELP72 transgenic plants under salt stress ............. 142 Figure 19. Phenotype analysis of ATGELP72 transgenic plants under osmotic stress ...... 145 Figure 20. The relative transcription levels of HXK1 in imbibed seeds and post-germinated seedlings ................................................................................ 148 Figure 21. The relative transcription levels of fatty acid metabolic factors in imbibed and post-germinated seedlings ......................................................................... 149 Figure 22. The complementary DNA (cDNA) sequence of AtGELP65 (GLIP4) ............. 153 Figure 23. Multiple alignment of GLIP1-7 in Arabidopsis ................................................ 154 Figure 24. An unrooted phylogenetic tree of Arabidopsis GLIPs ..................................... 155 Figure 25. Expression pattern of ATGELP65 in Arabidopsis ............................................ 156 Figure 26. Response of AtGELP65 transgenic plants to Pcc inoculation .......................... 157 Figure 27. Semi-quantitative RT-PCR analysis of ATGELP65 expression after Pcc inoculation ....................................................................................................... 159 Figure 28. Analysis of ATGELP65 gene expression in response to defense hormone ...... 160 Figure 29. Analysis of defense genes expression in transgenic Arabidopsis plants .......... 161

    Adams, D. O., and Yang, S. F. Ethylene biosynthesis: Identification of 1-aminocyclopropane-1-carboxylic acid as an intermediate in the conversion of methionine to ethylene. Proceedings of the National Academy of Sciences of the United States of America 76, 170-174, 1979.
    Agee, A. E., Surpin, M., Sohn, E. J., Girke, T., Rosado, A., Kram, B. W., Carter, C., Wentzell, A. M., Kliebenstein, D. J., Jin, H. C., Park, O. K., Jin, H., Hicks, G. R., and Raikhel, N. V. MODIFIED VACUOLE PHENOTYPE1 is an Arabidopsis myrosinase-associated protein involved in endomembrane protein trafficking. Plant Physiology 152, 120-132, 2010.
    Akoh, C. C., Lee, G. C., Liaw, Y. C., Huang, T. H., and Shaw, J. F. GDSL family of serine esterases/lipases. Progress in Lipid Research 43, 534-552, 2004.
    Arenas-Huertero, F., Arroyo, A., Zhou, L., Sheen, J., and Leon, P. Analysis of Arabidopsis glucose insensitive mutants, gin5 and gin6, reveals a central role of the plant hormone ABA in the regulation of plant vegetative development by sugar. Genes and Development 14, 2085-2096, 2000.
    Arif, S. A. M., Hamilton, R. G., Yusof, F., Chew, N. P., Loke, Y. H., Nimkar, S., Beintema, J. J., and Yeang, H. Y. Isolation and characterization of the early nodule-specific protein homologue (Hev b 13), an allergenic lipolytic esterase from Hevea brasiliensis latex. Journal of Biological Chemistry 279, 23933-23941, 2004.
    Bailey, T. L., Boden, M., Buske, F. A., Frith, M., Grant, C. E., Clementi, L., Ren, J., Li, W. W., and Noble, W. S. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Research 37, W202-W208, 2009.
    Beisson, F., Gardies, A. M., Teissere, M., Ferte, N., and Noat, G. An esterase neosynthesized in post-germinated sunflower seeds is related to a new family of lipolytic enzymes. Plant Physiology and Biochemistry 35, 761-765, 1997.
    Bewley, J. D. Seed Germination and Dormancy. Plant Cell 9, 1055-1066, 1997.
    Brick, D. J., Brumlik, M. J., Buckley, J. T., Cao, J. X., Davies, P. C., Misra, S., Tranbarger, T. J., and Upton, C. A new family of lipolytic plant enzymes with members in rice, arabidopsis and maize. Federation of European Biochemical Societies Letters 377, 475-480, 1995.
    Burow, M., Zhang, Z. Y., Ober, J. A., Lambrix, V. M., Wittstock, U., Gershenzon, J., and Kliebenstein, D. J. ESP and ESM1 mediate indol-3-acetonitrile production from indol-3-ylmethyl glucosinolate in Arabidopsis. Phytochemistry 69, 663-671, 2008.
    Cao, D., Cheng, H., Wu, W., Soo, H. M., and Peng, J. Gibberellin mobilizes distinct DELLA-dependent transcriptomes to regulate seed germination and floral development in Arabidopsis. Plant Physiology 142, 509-525, 2006.
    Cao, H., Li, X., and Dong, X. Generation of broad-spectrum disease resistance by overexpression of an essential regulatory gene in systemic acquired resistance. Proceedings of the National Academy of Sciences of the United States of America 95, 6531-6536, 1998.
    Cardenas, F., Alvarez, E., de Castro-Alvarez, M. S., Sanchez-Montero, J. M., Valmaseda, M., Elson, S. W., and Sinisterra, J. V. Screening and catalytic activity in organic synthesis of novel fungal and yeast lipases. Journal of Molecular Catalysis B: Enzymatic 14, 111-123, 2001.
    Chang, S. W., Lee, G. C., and Shaw, J. F. Codon optimization of Candida rugosa lip1 gene for improving expression in Pichia pastoris and biochemical characterization of the purified recombinant LIP1 lipase. Journal of Agricultural and Food Chemistry 54, 815-822, 2006.
    Chen, M. X., Du, X., Zhu, Y., Wang, Z., Hua, S. J., Li, Z. L., Guo, W. L., Zhang, G. P., Peng, J. R., and Jiang, L. X. Seed Fatty Acid Reducer acts downstream of gibberellin signalling pathway to lower seed fatty acid storage in Arabidopsis. Plant Cell and Environment 35, 2155-2169, 2012.
    Chepyshko, H., Lai, C. P., Huang, L. M., Liu, J. H., and Shaw, J. F. Multifunctionality and diversity of GDSL esterase/lipase gene family in rice (Oryza sativa L. japonica) genome: new insights from bioinformatics analysis. Biomed Central Genomics 13, 309, 2012.
    Cho, H. S., and Cronan, J. E. Escherichia-Coli thioesterase-I, molecular-cloning and sequencing of the structural gene and identification as a periplasmic enzyme. Journal of Biological Chemistry 268, 9238-9245, 1993.
    Cho, Y. H., Yoo, S. D., and Sheen, J. Regulatory functions of nuclear hexokinase1 complex in glucose signaling. Cell 127, 579-589, 2006.
    Clauss, K., Baumert, A., Nimtz, M., Milkowski, C., and Strack, D. Role of a GDSL lipase-like protein as sinapine esterase in Brassicaceae. Plant Journal 53, 802-813, 2008.
    Clauss, K., von Roepenack-Lahaye, E., Bottcher, C., Roth, M. R., Welti, R., Erban, A., Clough, S. J., and Bent, A. F. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant Journal 16, 735-743, 1998.
    Coque, L., Neogi, P., Pislariu, C., Wilson, K. A., Catalano, C., Avadhani, M., Sherrier, D. J., and Dickstein, R. Transcription of ENOD8 in Medicago truncatula nodules directs ENOD8 esterase to developing and mature symbiosomes. Molecular Plant-Microbe Interactions 21, 404-410, 2008.
    Creelman, R. A., and Mullet, J. E. Biosynthesis and Action of Jasmonates in Plants. Annual Review of Plant Physiology and Plant Molecular Biology 48, 355-381, 1997.
    Crockett, E. L., and Sidell, B. D. Peroxisomal beta-oxidation is a significant pathway for catabolism of fatty acids in a marine teleost. American Journal of Physiology 264, R1004-R1009, 1993.
    Cummins, I., and Edwards, R. Purification and cloning of an esterase from the weed black-grass (Alopecurus myosuroides), which bioactivates aryloxyphenoxypropionate herbicides. Plant Journal 39, 894-904, 2004.
    Dalrymple, B. P., Cybinski, D. H., Layton, I., McSweeney, C. S., Xue, G. P., Swadling, Y. J., and Lowry, J. B. Three Neocallimastix patriciarum esterases associated with the degradation of complex polysaccharides are members of a new family of hydrolases. Microbiology 143, 2605-2614, 1997.
    de la Torre, F., Sampedro, J., Zarra, I., and Revilla, G. AtFXG1, an Arabidopsis gene encoding alpha -L-fucosidase active against fucosylated xyloglucan oligosaccharides. Plant Physiology 128, 247-255, 2002.
    Dickstein, R., Prusty, R., Peng, T., Ngo, W., and Smith, M. E. Enod8, a novel early nodule-specific gene, is expressed in empty alfalfa nodules. Molecular Plant-Microbe Interactions 6, 715-721, 1993.
    Eastmond, P. J., Germain, V., Lange, P. R., Bryce, J. H., Smith, S. M., and Graham, I. A. Postgerminative growth and lipid catabolism in oilseeds lacking the glyoxylate cycle. Proceedings of the National Academy of Sciences of the United States of America 97, 5669-5674, 2000.
    Fait, A., Angelovici, R., Less, H., Ohad, I., Urbanczyk-Wochniak, E., Fernie, A. R., and Galili, G. Arabidopsis seed development and germination is associated with temporally distinct metabolic switches. Plant Physiology 142, 839-854, 2006.
    Footitt, S., Marquez, J., Schmuths, H., Baker, A., Theodoulou, F. L., and Holdsworth, M. Analysis of the role of COMATOSE and peroxisomal beta-oxidation in the determination of germination potential in Arabidopsis. Journal of Experimental Botany 57, 2805-2814, 2006.
    Footitt, S., Slocombe, S. P., Larner, V., Kurup, S., Wu, Y. S., Larson, T., Graham, I., Baker, A., and Holdsworth, M. Control of germination and lipid mobilization by COMATOSE, the Arabidopsis homologue of human ALDP. The European Molecular Biology Organization Journal 21, 2912-2922, 2002.
    Fulda, M., Schnurr, J., Abbadi, A., Heinz, E., and Browse, J. Peroxisomal Acyl-CoA synthetase activity is essential for seedling development in Arabidopsis thaliana. Plant Cell 16, 394-405, 2004.
    Graham, I. A., Denby, K. J., and Leaver, C. J. Carbon catabolite repression regulates glyoxylate cycle gene expression in cucumber. Plant Cell 6, 761-772, 1994.
    Graham, I. A., and Eastmond, P. J. Pathways of straight and branched chain fatty acid catabolism in higher plants. Progress in Lipid Research 41, 156-181, 2002.
    Hayashi, M., Toriyama, K., Kondo, M., and Nishimura, M. 2,4-dichlorophenoxybutyric acid-resistant mutants of Arabidopsis have defects in glyoxysomal fatty acid beta-oxidation. Plant Cell 10, 183-195, 1998.
    Holdsworth, M. J., Bentsink, L., and Soppe, W. J. Molecular networks regulating Arabidopsis seed maturation, after-ripening, dormancy and germination. New Phytologist 179, 33-54, 2008a.
    Holdsworth, M. J., Finch-Savage, W. E., Grappin, P., and Job, D. Post-genomics dissection of seed dormancy and germination. Trends in Plant Science 13, 7-13, 2008b.
    Hong, J. K., Choi, H. W., Hwang, I. S., Kim, D. S., Kim, N. H., Choi du, S., Kim, Y. J., and Hwang, B. K. Function of a novel GDSL-type pepper lipase gene, CaGLIP1, in disease susceptibility and abiotic stress tolerance. Planta 227, 539-558, 2008.
    Hong, L., Brown, J., Segerson, N. A., Rose, J. K., and Roeder, A. H. CUTIN SYNTHASE 2 maintains progressively developing cuticular ridges in Arabidopsis sepals. Molecular Plant 10, 560-574, 2017.
    Hruz, T., Laule, O., Szabo, G., Wessendorp, F., Bleuler, S., Oertle, L., Widmayer, P., Gruissem, W., and Zimmermann, P. Genevestigator v3: a reference expression database for the meta-analysis of transcriptomes. Advances in Bioinformatics 2008, 420747, 2008.
    Huang, L. M., Lai, C. P., Chen, L. O., Chan, M. T., and Shaw, J. F. Arabidopsis SFAR4 is a novel GDSL-type esterase involved in fatty acid degradation and glucose tolerance. Botanical Studies 56, 33, 2015.
    Hye Gi Kim, S. J. K., Young Jin Jang, Myung Hee Nam, Joo Hee Chung, Yun-, and Cheol Na, H. G., and Ohkmae K. Park. GDSL Lipase 1 modulates plant immunity through feedback regulation of ethylene signaling. American Society of Plant Biologists, 2013.
    Jancowski, S., Catching, A., Pighin, J., Kudo, T., Foissner, I., and Wasteneys, G. O. Trafficking of the myrosinase-associated protein GLL23 requires NUC/MVP1/GOLD36/ERMO3 and the p24 protein CYB. Plant Journal 77, 497-510, 2014.
    Jang, J. C., Leon, P., Zhou, L., and Sheen, J. Hexokinase as a sugar sensor in higher plants. Plant Cell 9, 5-19, 1997.
    Kandzia, R., Grimm, R., Eckerskorn, C., Lindemann, P., and Luckner, M. Purification and characterization of lanatoside 15'-O-acetylesterase from Digitalis lanata Ehrh. Planta 204, 383-389, 1998.
    Karve, A., Xia, X., and Moore, B. Arabidopsis Hexokinase-Like1 and Hexokinase1 form a critical node in mediating plant glucose and ethylene responses. Plant Physiology 158, 1965-1975, 2012.
    Kazan, K., and Manners, J. M. Jasmonate signaling: toward an integrated view. Plant Physiology 146, 1459-1468, 2008.
    Kelly, A. A., Quettier, A. L., Shaw, E., and Eastmond, P. J. Seed storage oil mobilizationi is important but not essential for germination or seedling establishment in Arabidopsis. Plant Physiology 157, 866-875, 2011.
    Kim, H. G., Kwon, S. J., Jang, Y. J., Chung, J. H., Nam, M. H., and Park, O. K. GDSL lipase 1 regulates ethylene signaling and ethylene-associated systemic immunity in Arabidopsis. Federation of European Biochemical Societies Letters 588, 1652-1658, 2014.
    Kim, H. G., Kwon, S. J., Jang, Y. J., Nam, M. H., Chung, J. H., Na, Y. C., Guo, H. W., and Park, O. K. GDSL Lipase 1 modulates plant immunity through feedback regulation of ethylene signaling. Plant Physiology 163, 1776-1791, 2013.
    Kim, K. J., Lim, J. H., Kim, M. J., Kim, T., Chung, H. M., and Paek, K. H. GDSL-lipase1 (CaGL1) contributes to wound stress resistance by modulation of CaPR-4 expression in hot pepper. Biochemical and Biophysical Research Communications 374, 693-698, 2008.
    Koch, K. Sucrose metabolism: regulatory mechanisms and pivotal roles in sugar sensing and plant development. Current Opinion in Plant Biology 7, 235-246, 2004.
    Kram, B. W., Bainbridge, E. A., Perera, M. A., and Carter, C. Identification, cloning and characterization of a GDSL lipase secreted into the nectar of Jacaranda mimosifolia. Plant Molecular Biology 68, 173-183, 2008.
    Kunkel, B. N., and Brooks, D. M. Cross talk between signaling pathways in pathogen defense. Current Opinion in Plant Biology 5, 325-331, 2002.
    Kwon, S. J., Jin, H. C., Lee, S., Nam, M. H., Chung, J. H., Kwon, S. I., Ryu, C. M., and Park, O. K. GDSL lipase-like 1 regulates systemic resistance associated with ethylene signaling in Arabidopsis. Plant Journal 58, 235-245, 2009.
    Lai, C. P., Huang, L. M., Chen, L. O., Chan, M. T., and Shaw, J. F. Genome-wide analysis of GDSL-type esterases/lipases in Arabidopsis. Plant Molecular Biology 95, 181-197, 2017.
    Lee, D. S., Kim, B. K., Kwon, S. J., Jin, H. C., and Park, O. K. Arabidopsis GDSL lipase 2 plays a role in pathogen defense via negative regulation of auxin signaling. Biochemical and Biophysical Research Communications 379, 1038-1042, 2009.
    Lee, K. A., and Cho, T. J. Characterization of a salicylic acid- and pathogen-induced lipase-like gene in Chinese cabbage. Journal of Biochemistry and Molecular Biology 36, 433-441, 2003.
    Leon, P., and Sheen, J. Sugar and hormone connections. Trends in Plant Science 8, 110-116, 2003.
    Li, J., Derewenda, U., Dauter, Z., Smith, S., and Derewenda, Z. S. Crystal structure of the Escherichia coli thioesterase II, a homolog of the human Nef binding enzyme. Nature Structural Biology 7, 555-559, 2000.
    Li, Z. Y., Xu, Z. S., Chen, Y., He, G. Y., Yang, G. X., Chen, M., Li, L. C., and Ma, Y. Z. A Novel role for Arabidopsis CBL1 in affecting plant responses to glucose and gibberellin during germination and seedling development. PLoS One 8, 2013.
    Ling, H., Zhao, J., Zuo, K., Qiu, C., Yao, H., Qin, J., Sun, X., and Tang, K. Isolation and expression analysis of a GDSL-like lipase gene from Brassica napus L. Journal of Biochemistry and Molecular Biology 39, 297-303, 2006.
    Linka, N., Theodoulou, F. L., Haslam, R. P., Linka, M., Napier, J. A., Neuhaus, H. E., and Mayfield, J. A., Fiebig, A., Johnstone, S. E., and Preuss, D. Gene families from the Arabidopsis thaliana pollen coat proteome. Science 292, 2482-2485, 2001.
    Mikleusevic, G., Salopek-Sondi, B., and Luic, M. Arab-1, a GDSL lipase from the model plant, Arabidopsis thaliana (L.) Heynh. Croatica Chemica Acta 82, 439-447, 2009.
    Molgaard, A., Kauppinen, S., and Larsen, S. Rhamnogalacturonan acetylesterase elucidates the structure and function of a new family of hydrolases. Structure 8, 373-383, 2000.
    Momonoki, Y. S. Asymmetric distribution of acetylcholinesterase in gravistimulated maize seedlings. Plant Physiology 114, 47-53, 1997.
    Moore, B., Zhou, L., Rolland, F., Hall, Q., Cheng, W. H., Liu, Y. X., Hwang, I., Jones, T., and Sheen, J. Role of the Arabidopsis glucose sensor HXK1 in nutrient, light, and hormonal signaling. Science 300, 332-336, 2003.
    Muralidharan, M., Buss, K., Larrimore, K. E., Segerson, N. A., Kannan, L., and Mor, T. S. The Arabidopsis thaliana ortholog of a purported maize cholinesterase gene encodes a GDSL-lipase. Plant Molecular Biology 81, 565-576, 2013.
    Nagano, A. J., Fukao, Y., Fujiwara, M., Nishimura, M., and Hara-Nishimura, I. Antagonistic jacalin-related lectins regulate the size of ER body-type beta-glucosidase complexes in Arabidopsis thaliana. Plant and Cell Physiology 49, 969-980, 2008.
    Naranjo, M. A., Forment, J., Roldan, M., Serrano, R., and Vicente, O. Overexpression of Arabidopsis thaliana LTL1, a salt-induced gene encoding a GDSL-motif lipase, increases salt tolerance in yeast and transgenic plants. Plant, Cell and Environment 29, 1890-1900, 2006.
    Norman-Setterblad, C., Vidal, S., and Palva, E. T. Interacting signal pathways control defense gene expression in Arabidopsis in response to cell wall-degrading enzymes from Erwinia carotovora. Molecular Plant-Microbe Interaction 13, 430-438, 2000.
    Oh, I. S., Park, A. R., Bae, M. S., Kwon, S. J., Kim, Y. S., Lee, J. E., Kang, N. Y., Lee, S., Cheong, H., and Park, O. K. Secretome analysis reveals an Arabidopsis lipase involved in defense against Alternaria brassicicola. Plant Cell 17, 2832-2847, 2005.
    Overmyer, K., Tuominen, H., Kettunen, R., Betz, C., Langebartels, C., Sandermann, H., Jr., and Kangasjarvi, J. Ozone-sensitive arabidopsis rcd1 mutant reveals opposite roles for ethylene and jasmonate signaling pathways in regulating superoxide-dependent cell death. Plant Cell 12, 1849-1862, 2000.
    Palva, T. K., Holmstrom, K. O., Heino, P., and Palva, E. T. Induction of plant pefense response by exoenzymes of Erwinia-Carotovora subsp Carotovora. Molecular Plant-Microbe Interactions 6, 190-196, 1993.
    Pego, J. V., Weisbeek, P. J., and Smeekens, S. C. Mannose inhibits Arabidopsis germination via a hexokinase-mediated step. Plant Physiology 119, 1017-1023, 1999.
    Penfield, S., Rylott, E. L., Gilday, A. D., Graham, S., Larson, T. R., and Graham, I. A. Reserve mobilization in the Arabidopsis endosperm fuels hypocotyl elongation in the dark, is independent of abscisic acid, and requires PHOSPHOENOLPYRUVATE CARBOXYKINASE1. Plant Cell 16, 2705-2718, 2004.
    Penninckx, I. A. M. A., Thomma, B. P. H. J., Buchala, A., Metraux, J. P., and Broekaert, W. F. Concomitant activation of jasmonate and ethylene response pathways is required for induction of a plant defensin gene in Arabidopsis. Plant Cell 10, 2103-2113, 1998.
    Perombelon, M. C. M., and Kelman, A. Ecology of the Soft Rot Erwinias. Annual Review of Phytopathology 18, 361-387, 1980.
    Pieterse, C. M. J., Leon-Reyes, A., Van der Ent, S., and Van Wees, S. C. M. Networking by small-molecule hormones in plant immunity. Nature Chemical Biology 5, 308-316, 2009.
    Poirier, Y., Ventre, G., and Caldelari, D. Increased flow of fatty acids toward beta-oxidation in developing seeds of Arabidopsis deficient in diacylglycerol acyltransferase activity or synthesizing medium-chain-length fatty acids. Plant Physiology 121, 1359-1366, 1999.
    Pringle, D., and Dickstein, R. Purification of ENOD8 proteins from Medicago sativa root nodules and their characterization as esterases. Plant Physiology and Biochemistry 42, 73-79, 2004.
    Reina, J. J., Guerrero, C., and Heredia, A. Isolation, characterization, and localization of AgaSGNH cDNA: a new SGNH-motif plant hydrolase specific to Agave americana L. leaf epidermis. Journal of Experimental Botany 58, 2717-2731, 2007.
    Richards, D. E., King, K. E., Ait-ali, T., and Harberd, N. P. How gibberellin regulates plant growth and development: A molecular genetic analysis of gibberellin signaling. Annual Review of Plant Physiology and Plant Molecular Biology 52, 67-88, 2001.
    Riedel, K., Talker-Huiber, D., Givskov, M., Schwab, H., and Eberl, L. Identification and characterization of a GDSL esterase gene located proximal to the swr quorum-sensing system of Serratia liquefaciens MG1. Applied and Environmental Microbiology 69, 3901-3910, 2003.
    Rolland, F., Baena-Gonzalez, E., and Sheen, J. Sugar sensing and signaling in plants: Conserved and novel mechanisms. Annual Review of Plant Biology 57, 675-709, 2006.
    Rouge, P., Culerrier, R., Campistron, M., Granier, C., Bienvenu, F., Bienvenu, J., Didier, A., and Barre, A. Allergenicity of Hev b 13, a major esterase allergen in natural rubber latex (Hevea brasiliensis) allergy, does not only depend on its carbohydrate moiety. Molecular Immunology 47, 871-877, 2010.
    Ruppert, M., Woll, J., Giritch, A., Genady, E., Ma, X., and Stockigt, J. Functional expression of an ajmaline pathway-specific esterase from Rauvolfia in a novel plant-virus expression system. Planta 222, 888-898, 2005.
    Sagane, Y., Nakagawa, T., Yamamoto, K., Michikawa, S., Oguri, S., and Momonoki, Y. S. Molecular characterization of maize acetylcholinesterase. A novel enzyme family in the plant kingdom. Plant Physiology 138, 1359-1371, 2005.
    Schoof, H., Lenhard, M., Haecker, A., Mayer, K. F. X., Jurgens, G., and Laux, T. The stem cell population of Arabidopsis shoot meristems is maintained by a regulatory loop between the CLAVATA and WUSCHEL genes. Cell 100, 635-644, 2000.
    Smeekens, S. Sugar-induced signal transduction in plants. Annual Review of Plant Physiology and Plant Molecular Biology 51, 49-81, 2000.
    Solanas, M., and Escrich, E. An improved protocol to increase sensitivity of Southern blot using dig-labelled DNA probes. Jounal Biochemical and Biophysical Methods 35, 153-159, 1997.
    Sun, T. P., and Gubler, F. Molecular mechanism of gibberellin signaling in plants. Annual Review of Plant Biology 55, 197-223, 2004.
    Takahashi, K., Shimada, T., Kondo, M., Tamai, A., Mori, M., Nishimura, M., and Hara-Nishimura, I. Ectopic expression of an esterase, which is a candidate for the unidentified plant cutinase, causes cuticular defects in Arabidopsis thaliana. Plant and Cell Physiology 51, 123-131, 2010.
    Thomma, B. P., Eggermont, K., Penninckx, I. A., Mauch-Mani, B., Vogelsang, R., Cammue, B. P., and Broekaert, W. F. Separate jasmonate-dependent and salicylate-dependent defense-response pathways in Arabidopsis are essential for resistance to distinct microbial pathogens. Proceedings of the National Academy of Sciences of the United States of America 95, 15107-15111, 1998.
    To, J. P., Reiter, W. D., and Gibson, S. I. Mobilization of seed storage lipid by Arabidopsis seedlings is retarded in the presence of exogenous sugars. Biomed Central Plant Biology 2, 4, 2002.
    Updegraff, E. P., Zhao, F., and Preuss, D. The extracellular lipase EXL4 is required for efficient hydration of Arabidopsis pollen. Sexual Plant Reproduction 22, 197-204, 2009.
    Upton, C., and Buckley, J. T. A new family of lipolytic enzymes? Trends in Biochemical Sciences 20, 178-179, 1995.
    Vidal, S., deLeon, I. P., Denecke, J., and Palva, E. T. Salicylic acid and the plant pathogen Erwinia carotovora induce defense genes via antagonistic pathways. Plant Journal 11, 115-123, 1997.
    Vidal, S., Eriksson, A. R. B., Montesano, M., Denecke, J., and Palva, E. T. Cell wall-degrading enzymes from Erwinia carotovora cooperate in the salicylic acid-independent induction of a plant defense response. Molecular Plant-Microbe Interactions 11, 23-32, 1998.
    Volokita, M., Rosilio-Brami, T., Rivkin, N., and Zik, M. Combining comparative sequence and genomic data to ascertain phylogenetic relationships and explore the evolution of the large GDSL-lipase family in land plants. Molecular Biology and Evolution 28, 551-565, 2011.
    Wang, K. L. C., Li, H., and Ecker, J. R. Ethylene biosynthesis and signaling networks. Plant Cell 14, S131-S151, 2002.
    Wu, S. H., Ramonell, K., Gollub, J., and Somerville, S. Plant gene expression profiling with DNA microarrays. Plant Physiology and Biochemistry 39, 917-926, 2001.
    Yamamoto, K., Oguri, S., Chiba, S., and Momonoki, Y. S. Molecular cloning of acetylcholinesterase gene from Salicornia europaea L. Plant Signaling and Behavior 4, 361-366, 2009.
    Yamamoto, K., Oguri, S., and Momonoki, Y. S. Characterization of trimeric acetylcholinesterase from a legume plant, Macroptilium atropurpureum Urb. Planta 227, 809-822, 2008.
    Zhang, Z., Ober, J. A., and Kliebenstein, D. J. The gene controlling the quantitative trait locus EPITHIOSPECIFIER MODIFIER1 alters glucosinolate hydrolysis and insect resistance in Arabidopsis. Plant Cell 18, 1524-1536, 2006.
    Zhou, L., Jang, J. C., Jones, T. L., and Sheen, J. Glucose and ethylene signal transduction crosstalk revealed by an Arabidopsis glucose-insensitive mutant. Proceedings of the National Academy of Sciences of the United States of America 95, 10294-10299, 1998
    Zimmermann, P., Hirsch-Hoffmann, M., Hennig, L., and Gruissem, W. GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox. Plant Physiology 136, 2621-2632, 2004.

    下載圖示 校內:2023-01-08公開
    校外:2023-01-08公開
    QR CODE