| 研究生: |
顏琮儒 Yan, Coung-Ru |
|---|---|
| 論文名稱: |
大面積二硫化鉬薄膜之元件應用 The device applications of large-area MoS2 films |
| 指導教授: |
張守進
Chang, Shoou-Jinn 林時彥 Lin, Shih-Yen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 105 |
| 中文關鍵詞: | 二硫化鉬 、銻烯 、光偵測器 、原子層蝕刻 、記憶體元件 |
| 外文關鍵詞: | Molybdenum disulfide, antimonene, photodetectors, atomic layer etching, memory device |
| 相關次數: | 點閱:121 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文中我們首先探討兩種不同方式所製備的大面積二硫化鉬薄膜應用於元件,發現了藉由原子層沉積所製備的二硫化鉬薄膜所製作的元件比由濺鍍方式製備之薄膜來的較佳,原因為原子層沉積法之薄膜具有較佳的平整度及結晶性。之後我們開始二維材料電晶體優化工作,在接觸金屬方面,透過提高金屬鈦沉積溫度改善其結晶特性以及使用同為二維材料的金屬銻烯形成凡得瓦磊晶,逐步降低接觸電阻以改善元件特性。也利用薄膜再硫化的製程更進一步改善薄膜結晶性使元件特性持續提升。為了更進一步優化元件特性,透過改用單層二硫化鉬作為元件通道提升閘極對通道層的控制,在本文的元件優化工作將其開關電流比增加約385倍、場效電子遷移率增加約3735倍。接著依照相同的接觸電極概念運用到二硫化鉬光偵測器中,結果指出使用銻烯作為接觸金屬,其光電流高出兩個數量級,表明了二維材料凡得瓦磊晶的優勢在二維材料光電元件中可以有效提升光電流的收集。本論文也研究了二硫化鉬作為記憶體元件之應用,我們利用三層二硫化鉬薄膜以原子層蝕刻技術將上層之二硫化鉬孤立開來作為電荷儲存層,以防止帶電載子被施加的汲極電壓耗盡,其餘下層二硫化鉬作為電荷傳輸層。首先,我們透過電流遲滯曲線以及讀寫循環圖觀察到孤立二硫化鉬層越多電荷儲存的效果就越明顯,也進一步驗證載子是儲存於孤立二硫化鉬層的推論。也透過電流暫態圖觀察一次寫入/清除後1/0態維持的時效,觀察到1/0態讀取電流可維持達30分鐘。接著,透過改變寫入/清除時長觀察記憶體的操作速度,我們觀察到切換速度小於1秒,電流依舊跟得上切換速度呈現1/0狀態。最後,透過改變閘極操作偏壓觀察此記憶體閘極偏壓操作範圍。我們成功建構在只有幾個原子層厚度下具有1個電晶體0個電容器 (1T0C) 的動態隨機存取記憶體 (DRAM) 研究。
In this thesis, 2D material transistors are fabricated on wafer-scale MoS2 films prepared by the two-stage growth procedure. RF sputtering and the ALD are adopted to deposit Mo precursor on sapphire substrates before sulfurization. The higher field-effect mobility value of the MoS2 transistor fabricated by using ALD reveals that a uniform precursor distribution will help to form MoS2 films with improved crystallinity. After that, the work of optimizing device performance is for these issue of contact metals, the quality of films, the modulability of gate electrode. The best situation of device is using monolayer MoS2 as channel and antimonene as the contact metal. The device optimization work in this thesis increases its ON/OFF current ratio by about 385 times and the field-effect electron mobility by about 3735 times. The monolayer MoS2 film is used for photodetector application with different contact metals. The photocurrent of the photodetector using antimonene deposited at 75 ℃ as the contact metal is two orders of magnitude higher than that of the device deposited at room temperature with contact metal titanium, indicating the advantages of using 2D material van der Waals epitaxy can effectively improve the collection of photocurrent in 2D material optoelectronic devices. Next, we have demonstrated the application of multi-layer MoS2 as memory devices. Its operating mechanism and performance is observed by electrical measurements. we successfully constructed a dynamic random access memory (DRAM) with 1 transistor and 0 capacitors (1T0C) at only a few atomic layer thicknesses.
[1] Novoselov, Kostya S., et al. "Electric field effect in atomically thin carbon films." science 306.5696 (2004): 666-669.
[2] Radisavljevic, Branimir, et al. "Single-layer MoS2 transistors." Nature nanotechnology 6.3 (2011): 147-150.
[3] Mak, Kin Fai, et al. "Atomically thin MoS2: a new direct-gap semiconductor." Physical review letters 105.13 (2010): 136805.
[4] Li, Hai, et al. "Optical identification of single‐and few‐layer MoS2 sheets." Small 8.5 (2012): 682-686.
[5] Zeng, Hualing, and Xiaodong Cui. "An optical spectroscopic study on two-dimensional group-VI transition metal dichalcogenides." Chemical Society Reviews 44.9 (2015): 2629-2642.
[6] Splendiani, Andrea, et al. "Emerging photoluminescence in monolayer MoS2." Nano letters 10.4 (2010): 1271-1275.
[7] Dhakal, Krishna P., et al. "Confocal absorption spectral imaging of MoS 2: optical transitions depending on the atomic thickness of intrinsic and chemically doped MoS 2." Nanoscale 6.21 (2014): 13028-13035.
[8] Ye, Mingxiao, et al. "Recent advancement on the optical properties of two-dimensional molybdenum disulfide (MoS2) thin films." Photonics. Vol. 2. No. 1. Multidisciplinary Digital Publishing Institute, 2015.
[9] Lee, Changgu, et al. "Anomalous lattice vibrations of single-and few-layer MoS2." ACS nano 4.5 (2010): 2695-2700.
[10] Park, Sul Ki, et al. "CNT branching of three-dimensional steam-activated graphene hybrid frameworks for excellent rate and cyclic capabilities to store lithium ions." Carbon 116 (2017): 500-509.
[11] Li, Hai, et al. "Preparation and applications of mechanically exfoliated single-layer and multilayer MoS2 and WSe2 nanosheets." Accounts of chemical research 47.4 (2014): 1067-1075.
[12] Radisavljevic, Branimir, Michael Brian Whitwick, and Andras Kis. "Integrated circuits and logic operations based on single-layer MoS2." ACS nano 5.12 (2011): 9934-9938.
[13] Lee, Hee Sung, et al. "MoS2 nanosheet phototransistors with thickness-modulated optical energy gap." Nano letters 12.7 (2012): 3695-3700.
[14] Yin, Zongyou, et al. "Single-layer MoS2 phototransistors." ACS nano 6.1 (2012): 74-80.
[15] Zhang, Yijin, et al. "Ambipolar MoS2 thin flake transistors." Nano letters 12.3 (2012): 1136-1140.
[16] Coleman, Jonathan N., et al. "Two-dimensional nanosheets produced by liquid exfoliation of layered materials." Science 331.6017 (2011): 568-571.
[17] Smith, Ronan J., et al. "Large‐scale exfoliation of inorganic layered compounds in aqueous surfactant solutions." Advanced materials 23.34 (2011): 3944-3948.
[18] Yang, Jieun, and Hyeon Suk Shin. "Recent advances in layered transition metal dichalcogenides for hydrogen evolution reaction." Journal of Materials Chemistry A 2.17 (2014): 5979-5985.
[19] Shi, Yumeng, et al. "MoS2 surface structure tailoring via carbonaceous promoter." Scientific reports 5.1 (2015): 1-12.
[20] Wu, Di, et al. "Effect of Substrate symmetry on the dendrite morphology of MoS2 Film synthesized by CVD." Scientific Reports 7.1 (2017): 1-9.
[21] Wiberg, Egon, Arnold Frederick Holleman, and Nils Wiberg. Inorganic chemistry. Academic press, 2001.
[22] Zhang, Shengli, et al. "Atomically thin arsenene and antimonene: semimetal–semiconductor and indirect–direct band‐gap transitions." Angewandte Chemie 127.10 (2015): 3155-3158.
[23] Ji, Jianping, et al. "Two-dimensional antimonene single crystals grown by van der Waals epitaxy." Nature communications 7.1 (2016): 1-9.
[24] Kim, Hyungjun, and W-J. Maeng. "Applications of atomic layer deposition to nanofabrication and emerging nanodevices." Thin solid films 517.8 (2009): 2563-2580.
[25] Moura, Catarina Costa, et al. "Raman spectroscopy and coherent anti-Stokes Raman scattering imaging: prospective tools for monitoring skeletal cells and skeletal regeneration." Journal of The Royal Society Interface 13.118 (2016): 20160182.
[26] Wang, Kangpeng, et al. "Ultrafast saturable absorption of two-dimensional MoS2 nanosheets." ACS nano 7.10 (2013): 9260-9267.
[27] Zhang, Yu-Wei, et al. "Tungsten diselenide top-gate transistors with multilayer antimonene electrodes: Gate stacks and epitaxially grown 2D material heterostructures." Scientific Reports 10.1 (2020): 1-7.
校內:2027-07-13公開