簡易檢索 / 詳目顯示

研究生: 顏琮儒
Yan, Coung-Ru
論文名稱: 大面積二硫化鉬薄膜之元件應用
The device applications of large-area MoS2 films
指導教授: 張守進
Chang, Shoou-Jinn
林時彥
Lin, Shih-Yen
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 105
中文關鍵詞: 二硫化鉬銻烯光偵測器原子層蝕刻記憶體元件
外文關鍵詞: Molybdenum disulfide, antimonene, photodetectors, atomic layer etching, memory device
相關次數: 點閱:121下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文中我們首先探討兩種不同方式所製備的大面積二硫化鉬薄膜應用於元件,發現了藉由原子層沉積所製備的二硫化鉬薄膜所製作的元件比由濺鍍方式製備之薄膜來的較佳,原因為原子層沉積法之薄膜具有較佳的平整度及結晶性。之後我們開始二維材料電晶體優化工作,在接觸金屬方面,透過提高金屬鈦沉積溫度改善其結晶特性以及使用同為二維材料的金屬銻烯形成凡得瓦磊晶,逐步降低接觸電阻以改善元件特性。也利用薄膜再硫化的製程更進一步改善薄膜結晶性使元件特性持續提升。為了更進一步優化元件特性,透過改用單層二硫化鉬作為元件通道提升閘極對通道層的控制,在本文的元件優化工作將其開關電流比增加約385倍、場效電子遷移率增加約3735倍。接著依照相同的接觸電極概念運用到二硫化鉬光偵測器中,結果指出使用銻烯作為接觸金屬,其光電流高出兩個數量級,表明了二維材料凡得瓦磊晶的優勢在二維材料光電元件中可以有效提升光電流的收集。本論文也研究了二硫化鉬作為記憶體元件之應用,我們利用三層二硫化鉬薄膜以原子層蝕刻技術將上層之二硫化鉬孤立開來作為電荷儲存層,以防止帶電載子被施加的汲極電壓耗盡,其餘下層二硫化鉬作為電荷傳輸層。首先,我們透過電流遲滯曲線以及讀寫循環圖觀察到孤立二硫化鉬層越多電荷儲存的效果就越明顯,也進一步驗證載子是儲存於孤立二硫化鉬層的推論。也透過電流暫態圖觀察一次寫入/清除後1/0態維持的時效,觀察到1/0態讀取電流可維持達30分鐘。接著,透過改變寫入/清除時長觀察記憶體的操作速度,我們觀察到切換速度小於1秒,電流依舊跟得上切換速度呈現1/0狀態。最後,透過改變閘極操作偏壓觀察此記憶體閘極偏壓操作範圍。我們成功建構在只有幾個原子層厚度下具有1個電晶體0個電容器 (1T0C) 的動態隨機存取記憶體 (DRAM) 研究。

    In this thesis, 2D material transistors are fabricated on wafer-scale MoS2 films prepared by the two-stage growth procedure. RF sputtering and the ALD are adopted to deposit Mo precursor on sapphire substrates before sulfurization. The higher field-effect mobility value of the MoS2 transistor fabricated by using ALD reveals that a uniform precursor distribution will help to form MoS2 films with improved crystallinity. After that, the work of optimizing device performance is for these issue of contact metals, the quality of films, the modulability of gate electrode. The best situation of device is using monolayer MoS2 as channel and antimonene as the contact metal. The device optimization work in this thesis increases its ON/OFF current ratio by about 385 times and the field-effect electron mobility by about 3735 times. The monolayer MoS2 film is used for photodetector application with different contact metals. The photocurrent of the photodetector using antimonene deposited at 75 ℃ as the contact metal is two orders of magnitude higher than that of the device deposited at room temperature with contact metal titanium, indicating the advantages of using 2D material van der Waals epitaxy can effectively improve the collection of photocurrent in 2D material optoelectronic devices. Next, we have demonstrated the application of multi-layer MoS2 as memory devices. Its operating mechanism and performance is observed by electrical measurements. we successfully constructed a dynamic random access memory (DRAM) with 1 transistor and 0 capacitors (1T0C) at only a few atomic layer thicknesses.

    摘要 I ABSTRACT II 致謝 VI 目錄 VIII 表目錄 XIII 圖目錄 XIV 第一章 緒論 1 1-1 研究動機與論文架構 1 1-2 二硫化鉬(MoS2)晶體結構與基本性質 3 1-2-1 二硫化鉬晶體結構 3 1-2-2 二硫化鉬拉曼光譜分析 5 1-2-3 二硫化鉬之光激發螢光光譜分析 6 1-2-4 二硫化鉬之製備方式 7 i. 機械剝離法 (Mechanical Exdoliation) 7 ii. 電化學分離法 (Electrochemical separation method) 8 iii. 化學氣相沉積法 (Chemical Vapor Deposition) 9 1-3 銻烯 (Antimonene, Sb) 之基本性質 11 1-3-1 銻烯晶體結構與特性 11 1-3-2 銻烯拉曼光譜分析 11 第二章 實驗儀器介紹 13 2-1 二硫化鉬薄膜成長系統 13 2-1-1 射頻濺鍍沉積系統 (Radio-Frequency sputter system, RF sputter) 13 2-1-2 原子層沉積系統 (Atomic Layer Deposition system, ALD) 17 2-1-3 硫化系統 (Sulfurization system) 19 2-2 材料分析儀器 20 2-2-1 高解析共軛焦拉曼顯微光譜儀 (High Resolution Confocal Raman spectrum, HRCRM) 20 2-2-2 光激發螢光光譜儀 (Photoluminescence, PL) 22 2-2-3 原子力顯微鏡 (Atomic Force Microscopy, AFM) 23 2-2-4 X-射線繞射分析儀 (X-Ray Diffraction, XRD) 25 2-2-5 紫外光/可見光光譜儀 (UV-Vis spectrophotometer) 26 2-3 電晶體製程設備與分析儀器 27 2-3-1 電子束蒸鍍沉積系統 (E-beam gun evaporation) 27 2-3-2 反應式離子乾蝕刻系統 (Reactive-Ion Etching, RIE) 29 2-3-3 原子層沉積系統 (Atomic Layer Deposition system, ALD) 30 2-3-4 原子層蝕刻系統 (Atomic layer etching, ALE) 31 2-3-5 元件三端點量測系統 32 2-3-6 元件光電流測量系統 32 第三章 不同方式製備的大面積二硫化鉬薄膜之元件特性 34 3-1 以濺鍍 / 原子層沉積 (ALD) 方法成長二硫化鉬薄膜 34 3-1-1 鉬金屬沉積 34 3-1-2 三氧化鉬 (MoO3) 沉積 35 3-1-3 鉬金屬/三氧化鉬 (MoO3) 硫化 36 3-2 以兩種製備方式成長之二硫化鉬薄膜的特性比較 37 3-2-1 拉曼訊號分析 37 3-2-2 螢光發光光譜分析 39 3-2-3 原子力顯微鏡分析 41 3-2-4 吸收光譜分析 43 3-3 二硫化鉬背閘極場效電晶體的製備及量測 44 3-3-1 薄膜轉印至基板 (Transfer method) 44 3-3-2 定義源極與汲極 (Source & Drain region definition) 46 3-3-3 定義場效電晶體通道 (Channel region definition) 46 3-3-4 元件測量比較 (transistor measurement) 47 3-4 結論 49 第四章 二硫化鉬電晶體之元件優化 50 4-1 升溫至75 ℃下沉積鈦作為接觸電極之背向閘極場效電晶體 50 4-2 使用銻烯作為接觸電極之背向閘極場效電晶體 52 4-3 以二硫化鉬薄膜為基板再成長二硫化鉬薄膜 54 4-3-1 使用不同層數二硫化鉬基板及硫化溫度之比較 55 4-3-2 不同三氧化鉬沉積溫度對於薄膜成長的影響 57 4-3-3 以混和氣體 (氬氣/氫氣) 與不同硫化時間對於薄膜成長的影響 59 4-4 The post-growth annealing改善二硫化鉬薄膜晶體特性 62 4-5 使用一層二硫化鉬薄膜作為電晶體之通道 64 4-6 元件優化之條件統整 68 4-7 將不同條件之TLM模型計算接觸電阻之比較 69 4-7-1 濺鍍法沉積之三層二硫化鉬以室溫沉積之鈦作為接觸電極其TLM量 測分析 71 4-7-2 原子層沉積之三層二硫化鉬以室溫沉積之鈦作為接觸電極其TLM量 測分析 72 4-7-3 原子層沉積之三層二硫化鉬以75 ℃沉積之鈦作為接觸電極其TLM 量測分析 73 4-7-4 原子層沉積之三層二硫化鉬以75 ℃沉積之銻烯作為接觸電極其 TLM量測分析 74 4-7-5 原子層沉積之三層二硫化鉬在850 ℃再硫化後以75 ℃沉積之銻烯作 為接觸電極其TLM量測分析 75 4-7-6 原子層沉積之三層二硫化鉬在900 ℃再硫化後以75 ℃沉積之銻烯作 為接觸電極其TLM量測分析 76 4-7-7 原子層沉積之單層二硫化鉬以75 ℃沉積之銻烯作為接觸電極其 TLM量測分析 77 4-7-8 各條件之TLM比較 78 4-8 單層二硫化鉬電晶體之光電應用 79 4-9 結論 80 第五章 以孤立二硫化鉬作為電荷儲存層之記憶體元件應用 82 5-1 上閘極場效電晶體製備 82 5-1-1 定義源極與汲極 (Source & Drain region definition) 84 5-1-2 原子層蝕刻 (Atomic layer etching) 84 5-1-3 沉積接觸金屬 (Contact metal deposition) 86 5-1-4 定義通道區域 (Channel region definition) 86 5-1-5 氧化層沉積 (Oxide layer deposition) 87 5-1-6 定義上閘極 (Gate region definition) 88 5-2 以IDS-VGS曲線圖觀察元件之遲滯 (hysteresis) 現象 89 5-3 以IDS-time暫態圖觀察一次寫入後之維持時效 91 5-4 以IDS-time讀寫循環圖觀察元件之操作速度 93 5-5 觀察元件1/0電流比隨操作偏壓改變之變化 96 5-6 結論 98 第六章 總結 100 參考文獻 103

    [1] Novoselov, Kostya S., et al. "Electric field effect in atomically thin carbon films." science 306.5696 (2004): 666-669.
    [2] Radisavljevic, Branimir, et al. "Single-layer MoS2 transistors." Nature nanotechnology 6.3 (2011): 147-150.
    [3] Mak, Kin Fai, et al. "Atomically thin MoS2: a new direct-gap semiconductor." Physical review letters 105.13 (2010): 136805.
    [4] Li, Hai, et al. "Optical identification of single‐and few‐layer MoS2 sheets." Small 8.5 (2012): 682-686.
    [5] Zeng, Hualing, and Xiaodong Cui. "An optical spectroscopic study on two-dimensional group-VI transition metal dichalcogenides." Chemical Society Reviews 44.9 (2015): 2629-2642.
    [6] Splendiani, Andrea, et al. "Emerging photoluminescence in monolayer MoS2." Nano letters 10.4 (2010): 1271-1275.
    [7] Dhakal, Krishna P., et al. "Confocal absorption spectral imaging of MoS 2: optical transitions depending on the atomic thickness of intrinsic and chemically doped MoS 2." Nanoscale 6.21 (2014): 13028-13035.
    [8] Ye, Mingxiao, et al. "Recent advancement on the optical properties of two-dimensional molybdenum disulfide (MoS2) thin films." Photonics. Vol. 2. No. 1. Multidisciplinary Digital Publishing Institute, 2015.
    [9] Lee, Changgu, et al. "Anomalous lattice vibrations of single-and few-layer MoS2." ACS nano 4.5 (2010): 2695-2700.
    [10] Park, Sul Ki, et al. "CNT branching of three-dimensional steam-activated graphene hybrid frameworks for excellent rate and cyclic capabilities to store lithium ions." Carbon 116 (2017): 500-509.
    [11] Li, Hai, et al. "Preparation and applications of mechanically exfoliated single-layer and multilayer MoS2 and WSe2 nanosheets." Accounts of chemical research 47.4 (2014): 1067-1075.
    [12] Radisavljevic, Branimir, Michael Brian Whitwick, and Andras Kis. "Integrated circuits and logic operations based on single-layer MoS2." ACS nano 5.12 (2011): 9934-9938.
    [13] Lee, Hee Sung, et al. "MoS2 nanosheet phototransistors with thickness-modulated optical energy gap." Nano letters 12.7 (2012): 3695-3700.
    [14] Yin, Zongyou, et al. "Single-layer MoS2 phototransistors." ACS nano 6.1 (2012): 74-80.
    [15] Zhang, Yijin, et al. "Ambipolar MoS2 thin flake transistors." Nano letters 12.3 (2012): 1136-1140.
    [16] Coleman, Jonathan N., et al. "Two-dimensional nanosheets produced by liquid exfoliation of layered materials." Science 331.6017 (2011): 568-571.
    [17] Smith, Ronan J., et al. "Large‐scale exfoliation of inorganic layered compounds in aqueous surfactant solutions." Advanced materials 23.34 (2011): 3944-3948.
    [18] Yang, Jieun, and Hyeon Suk Shin. "Recent advances in layered transition metal dichalcogenides for hydrogen evolution reaction." Journal of Materials Chemistry A 2.17 (2014): 5979-5985.
    [19] Shi, Yumeng, et al. "MoS2 surface structure tailoring via carbonaceous promoter." Scientific reports 5.1 (2015): 1-12.
    [20] Wu, Di, et al. "Effect of Substrate symmetry on the dendrite morphology of MoS2 Film synthesized by CVD." Scientific Reports 7.1 (2017): 1-9.
    [21] Wiberg, Egon, Arnold Frederick Holleman, and Nils Wiberg. Inorganic chemistry. Academic press, 2001.
    [22] Zhang, Shengli, et al. "Atomically thin arsenene and antimonene: semimetal–semiconductor and indirect–direct band‐gap transitions." Angewandte Chemie 127.10 (2015): 3155-3158.
    [23] Ji, Jianping, et al. "Two-dimensional antimonene single crystals grown by van der Waals epitaxy." Nature communications 7.1 (2016): 1-9.
    [24] Kim, Hyungjun, and W-J. Maeng. "Applications of atomic layer deposition to nanofabrication and emerging nanodevices." Thin solid films 517.8 (2009): 2563-2580.
    [25] Moura, Catarina Costa, et al. "Raman spectroscopy and coherent anti-Stokes Raman scattering imaging: prospective tools for monitoring skeletal cells and skeletal regeneration." Journal of The Royal Society Interface 13.118 (2016): 20160182.
    [26] Wang, Kangpeng, et al. "Ultrafast saturable absorption of two-dimensional MoS2 nanosheets." ACS nano 7.10 (2013): 9260-9267.
    [27] Zhang, Yu-Wei, et al. "Tungsten diselenide top-gate transistors with multilayer antimonene electrodes: Gate stacks and epitaxially grown 2D material heterostructures." Scientific Reports 10.1 (2020): 1-7.

    無法下載圖示 校內:2027-07-13公開
    校外:2027-07-13公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE