簡易檢索 / 詳目顯示

研究生: 彭建華
Peng, Chien-Hua
論文名稱: 藍光增強氧化鋅奈米柱微機電氣體感測器
Zinc Oxide Nanorods MEMS Gas Sensor with Blue Light Enhancement
指導教授: 張守進
Chang, Shoou-Jinn
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2018
畢業學年度: 107
語文別: 英文
論文頁數: 88
中文關鍵詞: 微機電系統氧化鋅氧化銦錫氣體感測器
外文關鍵詞: MEMS, ZnO, ITO, Gas sensors
相關次數: 點閱:69下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文利用水熱法成長氧化鋅奈米柱,以及利用磁控濺鍍沉積氧化銦錫薄膜,探討不同製程條件下的奈米柱與薄膜特性。之後,利用氧化鋅奈米柱做為感測層,氧化銦錫薄膜做為電極及微加熱器,搭配深蝕刻系統製備具懸浮結構之微機電系統氣體感測器。除了對氣體量測進行探討,也對微加熱器功耗進行討論,更利用氧化鋅本身的缺陷探討藍光對其氣體感測的影響。我們希望能將奈米材料的製造技術與微機電系統做結合,並且與發光二極體配合,以達到垂直整合的效果。
    第一個部分,我們以水熱法的方式成長氧化鋅奈米柱,探討不同合成時間對奈米柱尺寸的影響,以確保合成高質量之氧化鋅奈米柱。在確認合成的時間後,對氧化鋅奈米柱進行的結構分析、組成分析及光學分析。在結構特性上,水熱法成長的氧化鋅奈米柱呈現多晶型態;組成分析上,也確認合成了未參雜的氧化鋅奈米柱;在光學分析上,利用PL分析,可以看出水熱法合成的奈米柱屬於缺陷偏多的狀況,並於第二部分討論藍光的影響。此外,也利用磁控濺鍍的方式在不同氧分壓的製程條件下進行薄膜沉積,並分別探討氧化銦錫的光學及電特性。在光學特性上,結果顯示薄膜在經過退火處理後,在可見光區有著85%以上的高穿透率;而在電性分析上,透過四點探針的分析,可達到10 Ω/sq.以下的片電阻值。
    第二部分以氧化鋅奈米柱為感測層,氧化銦錫薄膜做為電極及微加熱器,製備微機電系統結構之氣體感測器,並對乙醇、甲醛、硫化氫以及一氧化氮等氣體進行檢測。在微加熱器功耗的表現上,與之前實驗室研究的成果相比,有著約15%至18%的減少。氣體量測方面,在最佳的操作溫度情況下,對於200 ppb的硫化氫及一氧化氮分別有著66.87%及191.13%的響應。實驗的最後,我們利用氧化鋅奈米柱缺陷的特性,利用藍光發光二極體從元件底部對感測層進行照光,並探討藍光對感測響應的影響。從實驗結果可知,藍光可以使50 ppb的硫化氫及一氧化氮的響應值,分別從照射前的26.03%及48.43%,增加至38.01%及86.17%。配合藍光照射下的電流時間圖,可以看出藍光會使得感測層的電流值增加,依此推論是藍光使得電子數目增加,進而增加了響應值。

    In this thesis, zinc oxide (ZnO) nanorods are prepared by hydrothermal method, indium tin oxide (ITO) thin film prepared by RF magnetron sputtering system, and their properties are discussed thoroughly under different processing conditions. Then we will apply the ZnO nanorods as sensing layer, applying ITO thin film as interdigitated electrodes and microheater, and use deep etching system to fabricate MEMS structure gas sensors. Besides gas sensing performance, the power consumption of microheater and blue light influence to gas sensing performance are also discussed. We hope to combining the technique of fabricating nanomaterial with MEMS sensors, and cooperate with light-emitting diode to achieve vertical integration.
    In the first part of the experiment, we synthesize ZnO nanorods with hydrothermal method, and investigate different synthesis time’s influence to the size of nanorods to make sure synthesizing high quality nanorods. After determining synthesis time, we investigate the sample into structure, element and optical analysis. From the structure analysis, the nanorods present polycrystalline state. The element analysis let us confirm synthesizing undoped ZnO nanorods. From optical analysis, we know nanorods contain lots of defects via the photoluminescence analysis. Also, we deposit ITO thin film under different oxygen partial pressure ratio by RF magnetron sputter and investigate the electrical and optical property. From optical analysis, the transmittance is higher than 85% at visible light region, after the annealing process. The electrical property is analyzed via four-point probe, and the results show that the sheet resistance is lower than 10 Ω/sq.
    In the second part of the experiment, we apply the ZnO nanorods as sensing layer, applying ITO thin film as interdigitated electrodes and microheater, and fabricate MEMS structure gas sensors to detect harmful gases, including ethanol, formaldehyde, hydrogen sulfide and nitric oxide. The microheater’s power consumption is reduced about 15% to 18%, comparing with our laboratory’s previous research. On the performance of gas sensing, the device can detect 200 ppb hydrogen sulfide and nitric oxide with response value 66.87% and 191.13% respectively. In the last, we use blue light LED and illuminate from the bottom side of the gas sensors. Since the ZnO nanorods are full of defects, the transient current will increase as the blue light illuminating. The response values of 50 ppb hydrogen sulfide and nitric oxide are increased from 26.03% and 48.43%, to 38.01% and 86.17% respectively, after blue light illuminating. This phenomenon is due to extra electrons, which are generated by blue light, increasing the response value.

    Abstract (Chinese) I Abstract (English) III 誌謝 V Contents VI Table Captions IX Figure Captions X Chapter 1. Introduction 1 1.1 Background and Motivation 1 1.2 Background of Zinc Oxide 5 1.3 Introduction of Hydrothermal Method 6 1.4 Overview of Gas Sensor 8 1.5 Organization of Thesis 10 Chapter 2. Relevant Theory and Experimental System 11 2.1 Theory of Gas Sensors 11 2.2 Important Parameters of Gas Sensors 13 2.2.1 Sensitivity 13 2.2.2 Response Time & Recovery Time 14 2.2.3 Working Temperature 15 2.2.4 Selectivity 15 2.3 Related Mechanism of MEMS gas sensors 16 2.3.1 Bosch DRIE and Cryogenic DRIE 16 2.3.2 Resistive Microheater 20 2.4 Fabrication Systems of Gas Sensors 22 2.4.1 The RCA wet bench system 22 2.4.2 The Furnace Tube System 23 2.4.3 Photolithography and Mask Aligner 25 2.4.4 Plasma-Enhanced Chemical Vapor Deposition & Inductively Coupled Plasma Etching System 26 2.4.5 The RF Magnetron Sputter System 27 2.5 Analyst Systems 29 2.5.1 Scanning Electron Microscope (SEM) 29 2.5.2 X-ray Diffraction Analysis (XRD) 30 2.5.3 Infrared Thermal Imager 32 Chapter 3. Characteristics of ZnO Nanorods and ITO Thin Film 34 3.1 Growth of Sample 34 3.1.1 Growth of ZnO Nanorods Sample 34 3.1.2 Growth of ITO Thin Film Sample 35 3.2 Characteristics of ZnO Nanorods 36 3.2.1 Structural Characteristics 36 3.2.2 Elemental Analysis 40 3.2.3 Optical Analysis 42 3.3 Characteristics of ITO Thin Film 43 3.3.1 Optical Characteristics 43 3.3.2 Electrical Characteristics 47 Chapter 4. Fabrication and Characteristics of ZnO Nanorods MEMS Gas Sensor 49 4.1 Fabrication of ZnO Nanorods MEMS Gas Sensor with ITO Thin Film as Electrodes 49 4.2 Basic Characteristics of ZnO Nanorods MEMS Gas Sensor 57 4.2.1 Electrical Characteristic of the Microheater 57 4.2.2 Morphology of the Gas Sensor 59 4.3 Sensing Characteristic of ZnO Nanorods MEMS Gas Sensors 61 4.3.1 Measurement Setup 61 4.3.2 Operating Temperature Influence 62 4.3.3 Concentration Influence 69 4.4 Blue Light Influence 73 Chapter 5. Conclusion and Future Work 77 5.1 Conclusion 77 5.2 Future Work 79 Reference 81

    [1] Q. Qi, Z. Tong, S. J. Wang, & X. J. Zheng, “Humidity sensing properties of KCl-doped ZnO nanofibers with super-rapid response and recovery,” Sensors and Actuators B: Chemical, vol. 137, issue. 2, pp. 649-655 (2009).
    [2] R. L. Vander Wal, G. W. Hunter, J. C. Xu, … & T. M. Ticich, “Metal-oxide nanostructure and gas-sensing performance,” Sensors and Actuators B: Chemical, vol. 138, issue. 1, pp. 113-119 (2009).
    [3] R. Kumar, O. Al-Dossary, G. Kumar & A. Umar, “Zinc Oxide Nanostructures for NO2 Gas-Sensor Applications: A Review,” Nano-Micro Letters, vol. 7, issue. 2, pp. 97-120 (2014).
    [4] H. Tian, “Advances in the study on endogenous sulfur dioxide in the cardiovascular system,” Chin Med J., vol. 127, issue 21, pp. 3803-3807 (2014).
    [5] P. Tikuisis, D. M. Kane, T. M. McLellan, … & S. M. Fairburn, “Rate of formation of carboxyhemoglobin in exercising humans exposed to carbon monoxide,” Journal of Applied Physiology, vol. 72, issue 4, pp. 1311–1319 (1992).
    [6] Standards of Permissible Exposure Limits at Job Site, Ministry of Labor.
    [7] C. L. Cheng, H. C. Chang, C. I. Chang, & W. L. Fang, “Development of a CMOS MEMS pressure sensor with a mechanical force-displacement transduction structure,” Journal of Micromechanics and Microengineering, vol. 15, no. 12 (2015).
    [8] G. Kumar, & A. Raman, “Pressure sensor based on MEMS nano-cantilever beam structure as a heterodielectric gate electrode of dopingless TFET,” Superlattices and Microstructures, vol. 100, pp.535-547 (2016).
    [9] J. Q. Huang, F. Li, M. Zhao, & K. Wang, “A Surface Micromachined CMOS MEMS Humidity Sensor,” micromachines, vol. 6, issue 10, pp. 1569-1576 (2015).
    [10] T. A. Vincent, & J. W. Gardner, “A low cost MEMS based NDIR system for the monitoring of carbon dioxide in breath analysis at ppm levels,” Sensors and Actuators B: Chemical, vol. 236, pp. 954-964 (2016).
    [11] J. L. G. Fierro, Metal Oxides: Chemistry & Applications. CRC Press (2006).
    [12] X. B. Liu, H. J. Du, P. H. Wang, … & X. W. Sun, “A high-performance UV/visible photodetector of Cu2O/ZnO hybrid nanofilms on SWNT-based flexible conducting substrates,” Journal of Materials Chemistry C, vol. 2, issue 44, pp. 9536-9542 (2014).
    [13] D. C. Kim, W. S. Han, B. H. Kong, … & C. H. Hong, “Fabrication of the hybrid ZnO LED structure grown on p-type GaN by metal organic chemical vapor deposition,” Physica B: Condensed Matter, vol. 401, pp. 386-390 (2007).
    [14] S. J. Young, & L. T. Lai, “Field emission properties of ZnO nanosheets grown on a Si substrate,” MICROELECTRONIC ENGINEERING, vol. 148, pp. 40-43 (2015).
    [15] L. E. Greene, M. Law, B. D. Yuhas, & P. D. Yang, “ZnO-TiO2 core-shell nanorod/P3HT solar cells,” Journal of Physical Chemistry C, vol. 111, issue 50, pp. 18451-18456 (2007).
    [16] L. Zhu, & W. Zeng, “A novel coral rock-like ZnO and its gas sensing,” Materials Letters, vol. 209, pp. 244-246 (2017).
    [17] L. Vayssieres, “Growth of Arrayed Nanorods and Nanowires of ZnO from Aqueous Solutions,” Advanced Materials, vol. 15, issue 5, pp. 464-466 (2003).
    [18] X. D. Yan, Z. W. Li, R. Q. Chen, & W. Gao, “Template Growth of ZnO Nanorods and Microrods with Controllable Densities,” Crystals Growth Design, vol. 8, no. 7, pp. 2406-2410 (2008).
    [19] Z. Yunusa, M. N. Hamidon, A. Kaiser, & Z. Awang, “Gas Sensors: A Review,” Sensors & Transducers, vol. 168, issue 4, pp. 61-75 (2014).
    [20] W. H. Brattain, & J. Bardeen, “Surface properties of germanium,” Bell System Technical Journal, pp. 32 (1953).
    [21] C. Wang, X. Li, C. H. Feng, … & G. Lu, “Nanosheets assembled hierarchical flower-like WO3 nanostructures: Synthesis, characterization, and their gas sensing properties,” Sensors and Actuators B: Chemical, vol. 210, pp. 75-81 (2015).
    [22] European Office, Oststrasse, Figaro Products Catalogue, Figaro Gas Sensors 2000-Series, Figaro Engineering Inc., Dusseldorf, Germany, 2006.
    [23] H. Nguyena, T. Q. Chu, D. H. Nguyen, … & V. H. Nguyen, “Controllable growth of ZnO nanowires grown on discrete islands of Au catalyst for realization of planar-type micro gas sensors,” Sensors and Actuators B: Chemical, vol. 193, pp. 888-894 (2014).
    [24] P. Bhattacharyya, P. K. Basu, B. Mondal, & H. Saha, “A low power MEMS gas sensor based on nanocrystalline ZnO thin films for sensing methane,” Microelectronics Reliability, vol. 48, issue 11-12, pp. 1772-1779 (2008).
    [25] N. Yamazoe, “New Approaches for Improving Semiconductor Gas Sensors,” Sensors and Actuators B: Chemical, vol. 5, issue 1-4, pp. 7-19 (1991).
    [26] X. W. Li, X. Zhou, & Y. Liu, “Microwave hydrothermal synthesis and gas sensing application of porous ZnO core-shell microstructures,” RSC ADVANCES, vol. 4, issue 61, pp. 32538-32543 (2014).
    [27] J. Y. Liu, C. Wang, Q. Y. Yang, ... & G. Y. Lu, “Hydrothermal synthesis and gas-sensing properties of flower-like Sn3O4,” Sensors and Actuators B: Chemical, vol. 224, pp. 128-133 (2016).
    [28] H. J. Kim, & J. H. Lee, “Highly sensitive and selective gas sensors using p-type oxide semiconductors: Overview,” Sensors and Actuators B: Chemical, vol. 192, pp. 607-627 (2014).
    [29] L. F. Silvaa, J. C. M’Peko, A. C. Catto, … & E. Longo, “UV-enhanced ozone gas sensing response of ZnO-SnO2 heterojunctions at room temperature,” Sensors and Actuators B: Chemical, vol. 240, pp. 573–579 (2017).
    [30] F. B. Gu, H. T. Wang, D. M. Han, & Z. H. Wang, “Enhancing the sensing performance of SnO2 inverse opal thin films by In and Au doping,” Sensors and Actuators B: Chemical, vol. 245, pp. 1023–1031 (2017).
    [31] S. Ghosh, C. RoyChaudhuri, R. Bhattacharya, H. Saha, & N. Mukherjee. “Palladium−Silver-Activated ZnO Surface: Highly Selective Methane Sensor at Reasonably Low Operating Temperature,” ACS Applied Materials & Interfaces, vol. 6, pp. 3879−3887 (2014).
    [32] M. Kaur, B. K. Dadhichb, R. Singh, … & S. C. Gadkari, “RF sputtered SnO2: NiO thin films as sub-ppm H2S sensor operable at room temperature,” Sensors and Actuators B: Chemical, vol. 242, pp. 389-403 (2017).
    [33] T. Y. Chen, H. I. Chen, C. S. Hsu, … & W. C. Liu, “Characteristics of ZnO nanorods-based ammonia gas sensors with a cross-linked configuration,” Sensors and Actuators B: Chemical, vol. 221, pp. 491-498 (2015).
    [34] M. J. Walker, “Comparison of Bosch and Cryogenic processes for patterning high aspect ratio features in silicon,” SPIE Proceedings, vol. 4407, pp. 89-99 (2001).
    [35] T. Alexandra, M. Thomas, & S. Christoph, “Ultrathin SnO2 gas sensors fabricated by spray pyrolysis for the detection of humidity and carbon monoxide,” Sensors and Actuators B: Chemical, vol. 134, issue 2, pp. 796-802 (2008).
    [36] W. Kern, “The Evolution of Silicon Wafer Cleaning Technology,” Journal of The Electrochemical Society, vol. 137, issue 6, pp. 1887-1892 (1990).
    [37] J. Appels, E. Kooi, M. M. Paffen, J. J. H. Schatorje, & W. H. C. G. Verkuylen “Local oxidation of silicon and its application in semiconductor-device technology,” PHILIPS RESEARCH Reports, vol. 25, pp. 118-132 (1970).
    [38] F. Ay, & A. Aydinli, “Comparative investigation of hydrogen bonding in silicon based PECVD grown dielectrics for optical waveguides,” Optical Materials, vol. 26, issue 1, pp.33-46 (2004).
    [39] J. L. Vossen, & W. Kern, Thin Film Processes. New York: Academic Press (1978).
    [40] D. C. Reynolds, D. C. Look, B. Jogai, … & G. Cantwell, “Neutral-donor–bound-exciton complexes in ZnO crystals,” Phys. Rev. B, vol. 57, pp. 12151-12155 (1998).
    [41] W. Y. Kang, H. J. Choi, W. J. Kim, … & D. Golberg, “A comprehensive review of one-dimensional metal-oxide nanostructure photodetectors,” Sensors, vol. 9, pp. 6504-6529 (2009).
    [42] G. I. Goldstein, D. E. Newbury, P. Echlin, D. C. Joy, C. Fiori, & E. Lifshin, Scanning electron microscopy and x-ray microanalysis. New York: Plenum Press (1981).
    [43] W. H. Bragg, & W. L. Bragg, “The Reflexion of X-rays by Crystals,” Proc. R. Soc. Lond. A., vol. 88, pp. 428-438 (1913).
    [44] C. Y. Chang, & S. M. Sze, ULSI Technology. New York: McGraw-Hill (1996).
    [45] J. T. Costello, C. D. Mclnerney, C. M. Bleakley, J. Selfe, & A. E. Donnelly, “The use of thermal imaging in assessing skin temperature following cryotherapy: a review,” Journal of Thermal Biology, vol. 37, issue 2, pp. 103-110 (2012).
    [46] H. H. Wu, Z. F. Hu, B. Li, … & X. Q. Zhang, “ZnO films grown on ZnO-buffered a-plane sapphire substrates by hydrothermal method,” Materials Letters, vol. 232, pp. 206-208 (2018).
    [47] X. B. Dong, P. Yang, & R. X. Shi, “Fabrication of ZnO nanorod arrays via electrospinning assisted hydrothermal method,” Materials Letters, vol. 135, pp. 96-98 (2014).
    [48] H. B. Zeng, G. T. Duan, Y. Li, … & W. P. Cai, “Blue luminescence of ZnO nanoparticles based on non-equibrium process: defect origns and emission controls,” Advanced Functional Materials, vol. 20, pp. 561–572 (2010).
    [49] S. H. Lee, D. K. Lee, S. H. Seo, … & D. K. Park, “Influence of Oxygen Flow Rate on the Properties of ITO Films Prepared by Low-Frequency (60 Hz) Magnetron Sputtering,” Molecular Crystals and Liquid Crystals, vol. 459, pp. 221-229 (2007).
    [50] Y. S. Kim, Y. C. Park, S. G. Ansari, … & H. S. Shin, “Influence of O2 admixture and sputtering pressure on the properties of ITO thin films deposited on PET substrate using RF reactive magnetron Sputtering,” SURFACE & COATINGS TECHNOLOGY, vol. 173, pp. 299-308 (2003).
    [51] H. A. Ahmad, H. Zainuriah & S. Ahmad, “Enhancement of optical transmittance and electrical resistivity of post-annealed ITO thin films RF sputtered on Si,” Applied Surface Science, vol. 443, pp. 544-547 (2018).
    [52] S. J. Seong, Y. C. Jung, T. H. Lee, … & J. H. Ahn, “Enhanced uniformity in electrical and optical properties of ITO thin films using a wide thermal annealing system,” Materials Science in Semiconductor Processing, vol. 79, pp. 14-19 (2018).
    [53] L. Zhu, W. Zeng, & Y. Q. Li, “New insight into gas sensing property of ZnO nanorods and nanosheets,” Materials Letters, vol. 228, pp. 331-333 (2018).
    [54] H. Zhang, & J. X. Yi, “Enhanced ethanol gas sensing performance of ZnO nanoflowers decorated with LaMnO3 perovskite nanoparticles,” Materials Letters, vol. 216, pp. 196-198 (2018).
    [55] X. B. Hua, Z. G. Zhu, Z. H. Li, … & L. Y. Zheng, “Heterostructure of CuO microspheres modified with CuFe2O4 nanoparticles for highly sensitive H2S gas sensor,” Sensors and Actuators B: Chemical, vol. 264, pp. 139-149 (2018).
    [56] A. Boontuma, D. Phokharatkul, J. H. Hodak, … & S. K. Hodak, “H2S sensing characteristics of Ni-doped CaCu3Ti4O12 films synthesized by a sol-gel method,” Sensors and Actuators B: Chemical, vol. 260, pp. 877-887 (2018).
    [57] M. Reddeppa, B. G. Park, M. D. Kim, … & G. Murali, “H2, H2S gas sensing properties of rGO/GaN nanorods at room temperature: Effect of UV illumination,” Sensors and Actuators B: Chemical, vol. 264, pp. 353-362 (2018).
    [58] Z. X. Cai, H. Y. Li, … & X. Guo, “NO sensing by single crystalline WO3 nanowires,” Sensors and Actuators B: Chemical, vol. 219, pp. 346-353 (2015).
    [59] C. H. Lin, S. J. Chang, Fellow, IEEE, & T. J. Hsueh, “A WO3 Nanoparticles NO Gas Sensor Prepared by Hot-Wire CVD,” IEEE ELECTRON DEVICE LETTERS, vol. 38, no. 2, pp. 266-269 (2017).
    [60] S. H. Chuang, W. H. Chang, S. C. Huang, … & R. J. Wu, “Application of Nanostructure-Crystalline Tungsten Oxides for Nitric Oxide Sensors Working at Room Temperature,” SCIENCE OF ADVANCED MATERIALS, vol. 7, no. 6, pp. 1090-1096 (2015).
    [61] C. J. Shao, Y. Q. Chang, & Y. Long, “High performance of nanostructured ZnO film gas sensor at room temperature,” Sensors and Actuators B: Chemical, vol. 204, pp. 666-672 (2014).

    無法下載圖示 校內:2023-12-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE