簡易檢索 / 詳目顯示

研究生: 陳志賢
Chen, Jhin-Sian
論文名稱: NRP1的表現及Stat3的活化在口腔癌中扮演重要角色
NRP1 expression and Stat3 activation plays a critical role in oral cancer progression
指導教授: 陳玉玲
Chen, Yuh-Ling
學位類別: 碩士
Master
系所名稱: 醫學院 - 口腔醫學研究所
Institute of Oral Medicine
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 69
中文關鍵詞: neuropilin-1Stat3口腔麟狀細胞癌
外文關鍵詞: neuropilin-1, Stat3, Oral squamous cell carcinoma (OSCC)
相關次數: 點閱:164下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 口腔鱗狀細胞癌 (OSCC) 是全球常見的癌症之一。在台灣也是國人十大癌症之一,而在男性癌症死亡率更是排名第四的癌症。神經纖毛蛋白質-1(Neuropilin-1; NRP1)已知在較惡性以及高轉移性的腫瘤中會較高量表現。訊息傳遞轉錄活化基因-3 (Signal transducers and activator of transcription 3; Stat3) 是致癌性轉錄因子,已知在癌細胞和腫瘤微環境細胞都呈現持續活化的現象,在過去的研究已被證實,可能會去影響腫瘤細胞的轉移,以及腫瘤細胞的增生和凋亡。在本研究中,我們想要去探討在口腔癌症中NRP1與Stat3扮演怎樣的角色。首先我們利用免疫組織化學染色(immunohistochemistry)分析OSCC臨床檢體,發現NRP1、Stat3及pStat3的表現量在腫瘤組織中都高於正常組織,而且在腫瘤組織位置上有正相關高表現的現象。另外我們也利用西方墨點法(Western blot)分析四種OSCC細胞株,也發現NRP1及pStat3在較惡性的OSCC細胞株表現量較高。此外我們將免疫組織化學染色的結果進行量化及分析,發現在OSCC中NRP1的表現與腫瘤的期數有正相關,而Stat3則無差異。分析NRP1對OSCC的影響,我們發現NRP1 knockdown時,細胞的移行(migration),侵入(invasion)及增生(proliferation)都會受到抑制。另外我們發現當細胞knockdown Stat3情況下,NRP1及IL-6的表現量都有明顯的下降,我們利用線上軟體預測在NRP1的promoter上可能具有Stat3 DNA binding site,接著利用luciferase report assay分析,發現在有送入c-Stat3的組別中螢光素酶的活性相較於對照組有明顯的上升,也就表示在口腔癌細胞株中Stat3可能結合在NRP1驅動子上的DNA結合位,進而調控NRP1基因的轉錄表現。在動物實驗方面,我們將knockdown NRP1(shNRP1),Stat3(shStat3)或shLuci的SCC15細胞株分別進行腫瘤異體移植實驗,結果顯示shNRP1及shStat3的組別可以有效的降低腫瘤的大小及腫瘤重量,其中又以shNRP1的組別效果更為顯著。將腫瘤取下進行染色分析,發現在shNRP1及shStat3組別中腫瘤的CD31及Ki67染色有明顯低於shLuci組的表現。總結以上結果,NRP1的表現及Stat3的活化在口腔癌中扮演重要角色,且NRP1與Stat3的相互調控在口腔癌是新的發現,未來可能可以做為口腔癌診斷及治療標靶之參考。

    Oral squamous cell carcinoma (OSCC) is a common neoplasm worldwide. In Taiwan, that is also one of the top ten malignancies, and ranked the fourth leading cause of cancer death in Taiwanese male. Neuropilin-1 (NRP1) has been known to be highly expressed in high grade and metastatic tumors. Signal transducers and activator of transcription 3 (Stat3) is a cytoplasmic transcription factor which is constitutively activated in cancer cells and tumor microenvironment and implicates tumor metastasis, proliferation and apoptosis. Our preliminary results showed that Stat3 activation may positively regulate NRP1 expression in lung cancer cells. In this study, we aim to figure out the role of NRP1 and Stat3 in oral cancer. Above all, we used immunohistochemistry to examine the clinical OSCC specimens and found that NRP1/Stat3/p-Stat3 were higher expression in tumors compared to normal tissues and had positive correlation in tumor tissue. The expression level of NRP1 is positively correlated with tumor stage in clinical OSCC specimens. Moreover, the expression of NRP1 and p-Stat3 was higher and positively correlated in highly malignant OSCC cell lines. To investigate the influence of NRP1 in OSCC, we knocked down the expression of NRP1 and found the cell migration, invasion, and proliferation was all decreased in NRP1 silencing cells. In addition, we found that silencing the expression of Stat3 leads to a significant reduction in the expression level of NRP1 and IL-6. We analyzed the promoter region of NRP1 and found a potential Stat3 binding site may involve in transcriptional regulation of NRP1. Next, we use luciferase report assays to verify the regulation of stat3 in NRP1 expression, and then we finding that Stat3 could regulate NRP1 expression by drive on it’s promoter region. In animal models, we established tumor xenografts by subcutaneously implanting SCC15 cells with knockdown of NRP1, stat3 and shLuci (control) respectively. The result show that knockdown of NRP1 or Stat3 could effectively reduce tumor volume and tumor weight, especially in the shNRP1 group. However, analysis for angiogenesis and proliferative effect in the outcome. Tumors from the shNRP1 and shStat3 groups showed significantly lower CD31 and Ki67 staining than the shLuci groups. According to these results, the correlation of NRP1 expression levels and Stat3 activation is a novel finding in oral cancer development. In the future, NRP1/stat3 axis can be a new prognosis marker and therapeutic target in oral cancer.

    目錄 中文摘要 I 英文摘要 III 致謝 V 目錄 VII 表目錄 XI 附圖目錄 XII 圖目錄 XIII 附錄目錄 XV 英文縮寫檢索表 XVI 緒論 1 一、 口腔癌 1 二、 神經纖毛蛋白質-1(Neuropilin-1) 2 三、 訊息傳遞轉錄活化基因(Signal transducers and activator of transcription; Stat) 4 四、 訊息傳遞轉錄活化基因-3 (Stat3) 5 研究動機 8 材料與方法 9 一、 口腔癌細胞株(HSC3、SCC15、OC2、OECM1)培養 9 1-0細胞簡介 9 1-1繼代培養 9 1-2 冷凍保存細胞 10 1-3細胞解凍 10 1-4細胞計數 11 二、 細胞內RNA表現分析 11 2-1 RNA萃取 11 2-2 RNA及DNA定量 12 2-3 反轉錄酶反應(Reverse transcription) 13 2-4 聚合錄酶連鎖反應(polymerase chain reaction,PCR) 14 2-5 洋菜膠體電泳分析(Agarose gel electrophoresis) 15 2-6即時定量 PCR (qRT-PCR) 16 三、 細胞蛋白質表現分析 17 3-1 細胞蛋白質收集 17 3-2 蛋白質定量 18 3-3 西方點墨法(Western blot assay) 18 3-3-1 蛋白質樣品之準備 18 3-3-2 SDS-聚丙烯胺膠體電泳(SDS-polyacrylamide gel electrophoresis) 19 3-3-3 轉印(Electrotransfer) 20 3-3-4 免疫轉漬法(Immunobloting) 21 四、 轉染(Transfection) 22 五、 Lentiviral病毒質體的製備 23 5-1抑制表現病毒系統的製備(shRNA system) 23 5-2 病毒感染 (virus infection) 24 六、 Neuropilin-1 對口腔癌細胞功能影響之實驗 25 6-1細胞移行分析 (Migrtaion assay) 25 6-2 細胞侵襲分析 (Invasion assay) 25 6-3 細胞增生分析 (proliferation assay) 26 七、 螢光素酶報導測訂 (Luciferase Reporter Assay) 27 八、 免疫組織化學染色 (Immunohistochemistry) 28 8-1免疫組織化學染色步驟 28 8-2 口腔癌臨床檢體 29 九、 動物實驗之腫瘤生長分析 29 十、 統計分析 30 實驗結果 31 1. 在口腔癌細胞株Neuropilin 1的表現與Stat3的活化呈正相關 31 2. 臨床上口腔鱗狀上皮細胞癌中Neuropilin 1、p-Stat3及t-Stat3的表現量與腫瘤大小(T stage)具有正相關性 31 3. NRP1會增加口腔癌細胞株的移行(Migration)能力. 32 4. NRP1會增加口腔癌細胞株的侵襲(Invasion)能力. 33 5. 口腔癌中Neuropilin 1促進腫瘤細胞的增生(proliferation)能力 33 6. 口腔癌細胞株中Stat3可調控NRP1基因的轉錄表現 33 7. 在動物實驗中發現抑制NRP1與Stat3的表現與腫瘤形成的腫瘤大小具有正相關性 34 8. 在動物實驗中抑制NRP1與Stat3的表現可能會抑制腫瘤組織的血管新生及 組織的增生能力 35 討論 36 結論 42 參考資料 43 表一、利用免疫組織化學染色分析NRP1及t-Stat3表現量及分布位置於臨床口腔鱗狀上皮細胞癌組織微陣列切片 50 表二、TFSEARCH線上軟體預測在NRP1 promoter上可能具有的Stat3 DNA 結合位置 51 附圖一、肺癌細胞株中IL-6對於NRP1表現及Stat3活化之影響 52 圖一、Neuropilin 1在各種不同口腔癌細胞中的表現 53 圖二、利用免疫組織化學染色分析比較臨床口腔鱗狀上皮細胞癌病人檢體與正常口腔黏膜組織。 54 圖三、利用免疫組織化學染色法分析臨床口腔鱗狀上皮細胞癌(OSCC)病人檢體之Neuropilin-1表現 55 圖四、利用免疫組織化學染色法分析臨床口腔鱗狀上皮細胞癌(OSCC)病人檢體之phospho-Stat3表現 56 圖五、利用免疫組織化學染色法分析臨床口腔鱗狀上皮細胞癌(OSCC)病人檢體之total Stat3表現 57 圖六、利用免疫組織化學染色分析臨床口腔鱗狀上皮細胞癌(OSCC)病人檢體之NRP1、t-Stat3和p-Stat3表現,以及正相關高表現的情況 58 圖七、抑制NRP1表現會降低口腔癌細胞的移行能力 59 圖八、抑制NRP1表現會降低口腔癌細胞的侵襲能力 60 圖九、抑制NRP1表現會降低口腔癌細胞的侵襲增生能力 61 圖十、口腔癌細胞株中NRP1與Stat3之間的分子機轉 62 圖十一、螢光素酶報導測定 63 圖十二、動物實驗中Neuropilin 1或Stat3的表現會影響腫瘤生成的大小 64 圖十三、動物實驗中Neuropilin 1或Stat3的表現會影響腫瘤生成的大小 65 圖十四、利用免疫組織化學染色發現腫瘤異體移植皮下打入抑制NRP1或Stat3表現的SCC15口腔癌細胞株於免疫缺陷老鼠中形成之腫瘤具較低的血管新生及細胞增生能力 66 附錄一:儀器 67 自述 69

    Bagri, A., Tessier-Lavigne, M., and Watts, R.J. (2009). Neuropilins in tumor biology. Clinical cancer research 15, 1860-1864.

    Bielenberg, D.R., Pettaway, C.A., Takashima, S., and Klagsbrun, M. (2006). Neuropilins in neoplasms: expression, regulation, and function. Experimental cell research 312, 584-593.

    Brivanlou, A.H., and Darnell, J.E., Jr. (2002). Signal transduction and the control of gene expression. Science 295, 813-818.

    Cao, Y., Szabolcs, A., Dutta, S.K., Yaqoob, U., Jagavelu, K., Wang, L., Leof, E.B., Urrutia, R.A., Shah, V.H., and Mukhopadhyay, D. (2010). Neuropilin-1 mediates divergent R-Smad signaling and the myofibroblast phenotype. The Journal of biological chemistry 285, 31840-31848.

    Carrer, A., Moimas, S., Zacchigna, S., Pattarini, L., Zentilin, L., Ruozi, G., Mano, M., Sinigaglia, M., Maione, F., Serini, G., et al. (2012). Neuropilin-1 identifies a subset of bone marrow Gr1- monocytes that can induce tumor vessel normalization and inhibit tumor growth. Cancer research 72, 6371-6381.

    Catlett-Falcone, R., Landowski, T.H., Oshiro, M.M., Turkson, J., Levitzki, A., Savino, R., Ciliberto, G., Moscinski, L., Fernandez-Luna, J.L., Nunez, G., et al. (1999). Constitutive activation of Stat3 signaling confers resistance to apoptosis in human U266 myeloma cells. Immunity 10, 105-115.

    Chen, C., Li, M., Chai, H., Yang, H., Fisher, W.E., and Yao, Q. (2005). Roles of neuropilins in neuronal development, angiogenesis, and cancers. World journal of surgery 29, 271-275.

    Copeland, N.G., Gilbert, D.J., Schindler, C., Zhong, Z., Wen, Z., Darnell, J.E., Jr., Mui, A.L., Miyajima, A., Quelle, F.W., Ihle, J.N., et al. (1995). Distribution of the mammalian Stat gene family in mouse chromosomes. Genomics 29, 225-228.

    Grandis, J.R., Drenning, S.D., Chakraborty, A., Zhou, M.Y., Zeng, Q., Pitt, A.S., and Tweardy, D.J. (1998). Requirement of Stat3 but not Stat1 activation for epidermal growth factor receptor- mediated cell growth In vitro. The Journal of clinical investigation 102, 1385-1392.

    Gu, C., Limberg, B.J., Whitaker, G.B., Perman, B., Leahy, D.J., Rosenbaum, J.S., Ginty, D.D., and Kolodkin, A.L. (2002). Characterization of neuropilin-1 structural features that confer binding to semaphorin 3A and vascular endothelial growth factor 165. The Journal of biological chemistry 277, 18069-18076.

    Hong, T.M., Chen, Y.L., Wu, Y.Y., Yuan, A., Chao, Y.C., Chung, Y.C., Wu, M.H., Yang, S.C., Pan, S.H., Shih, J.Y., et al. (2007). Targeting neuropilin 1 as an antitumor strategy in lung cancer. Clinical cancer research : an official journal of the American Association for Cancer Research 13, 4759-4768.

    Ihle, J.N. (1996). STATs: signal transducers and activators of transcription. Cell 84, 331-334.

    Jing, N., and Tweardy, D.J. (2005). Targeting Stat3 in cancer therapy. Anti-cancer drugs 16, 601-607.

    Kantola, S., Parikka, M., Jokinen, K., Hyrynkangs, K., Soini, Y., Alho, O.P., and Salo, T. (2000). Prognostic factors in tongue cancer - relative importance of demographic, clinical and histopathological factors. British journal of cancer 83, 614-619.

    Karjalainen, K., Jaalouk, D.E., Bueso-Ramos, C.E., Zurita, A.J., Kuniyasu, A., Eckhardt, B.L., Marini, F.C., Lichtiger, B., O'Brien, S., Kantarjian, H.M., et al. (2011). Targeting neuropilin-1 in human leukemia and lymphoma. Blood 117, 920-927.

    Kawakami, A., Kitsukawa, T., Takagi, S., and Fujisawa, H. (1996). Developmentally regulated expression of a cell surface protein, neuropilin, in the mouse nervous system. Journal of neurobiology 29, 1-17.

    Kisseleva, T., Bhattacharya, S., Braunstein, J., and Schindler, C.W. (2002). Signaling through the JAK/STAT pathway, recent advances and future challenges. Gene 285, 1-24.

    Kitsukawa, T., Shimizu, M., Sanbo, M., Hirata, T., Taniguchi, M., Bekku, Y., Yagi, T., and Fujisawa, H. (1997). Neuropilin-semaphorin III/D-mediated chemorepulsive signals play a crucial role in peripheral nerve projection in mice. Neuron 19, 995-1005.

    Klampfer, L. (2006). Signal transducers and activators of transcription (STATs): Novel targets of chemopreventive and chemotherapeutic drugs. Current cancer drug targets 6, 107-121.

    Kolodkin, A.L., Levengood, D.V., Rowe, E.G., Tai, Y.T., Giger, R.J., and Ginty, D.D. (1997). Neuropilin is a semaphorin III receptor. Cell 90, 753-762.

    Leeman, R.J., Lui, V.W., and Grandis, J.R. (2006). STAT3 as a therapeutic target in head and neck cancer. Expert opinion on biological therapy 6, 231-241.

    Levy, D.E., and Darnell, J.E., Jr. (2002). Stats: transcriptional control and biological impact. Nature reviews Molecular cell biology 3, 651-662.
    Lippman, S.M., Sudbo, J., and Hong, W.K. (2005). Oral cancer prevention and the evolution of molecular-targeted drug development. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 23, 346-356.

    Miao, H.Q., Lee, P., Lin, H., Soker, S., and Klagsbrun, M. (2000). Neuropilin-1 expression by tumor cells promotes tumor angiogenesis and progression. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 14, 2532-2539.

    Miao, H.Q., Soker, S., Feiner, L., Alonso, J.L., Raper, J.A., and Klagsbrun, M. (1999). Neuropilin-1 mediates collapsin-1/semaphorin III inhibition of endothelial cell motility: functional competition of collapsin-1 and vascular endothelial growth factor-165. The Journal of cell biology 146, 233-242.

    Neufeld, G., Cohen, T., Gengrinovitch, S., and Poltorak, Z. (1999). Vascular endothelial growth factor (VEGF) and its receptors. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 13, 9-22.

    Niu, G., Heller, R., Catlett-Falcone, R., Coppola, D., Jaroszeski, M., Dalton, W., Jove, R., and Yu, H. (1999). Gene therapy with dominant-negative Stat3 suppresses growth of the murine melanoma B16 tumor in vivo. Cancer research 59, 5059-5063.

    Niu, G., Wright, K.L., Huang, M., Song, L., Haura, E., Turkson, J., Zhang, S., Wang, T., Sinibaldi, D., Coppola, D., et al. (2002). Constitutive Stat3 activity up-regulates VEGF expression and tumor angiogenesis. Oncogene 21, 2000-2008.

    Primiano, T., Baig, M., Maliyekkel, A., Chang, B.D., Fellars, S., Sadhu, J., Axenovich, S.A., Holzmayer, T.A., and Roninson, I.B. (2003). Identification of potential anticancer drug targets through the selection of growth-inhibitory genetic suppressor elements. Cancer cell 4, 41-53.

    Prud'homme, G.J., and Glinka, Y. (2012). Neuropilins are multifunctional coreceptors involved in tumor initiation, growth, metastasis and immunity. Oncotarget 3, 921-939.

    Sadowski, H.B., Shuai, K., Darnell, J.E., Jr., and Gilman, M.Z. (1993). A common nuclear signal transduction pathway activated by growth factor and cytokine receptors. Science 261, 1739-1744.

    Shuai, K., Stark, G.R., Kerr, I.M., and Darnell, J.E., Jr. (1993). A single phosphotyrosine residue of Stat91 required for gene activation by interferon-gamma. Science 261, 1744-1746.

    Soker, S., Miao, H.Q., Nomi, M., Takashima, S., and Klagsbrun, M. (2002). VEGF165 mediates formation of complexes containing VEGFR-2 and neuropilin-1 that enhance VEGF165-receptor binding. Journal of cellular biochemistry 85, 357-368.

    Soker, S., Takashima, S., Miao, H.Q., Neufeld, G., and Klagsbrun, M. (1998). Neuropilin-1 is expressed by endothelial and tumor cells as an isoform-specific receptor for vascular endothelial growth factor. Cell 92, 735-745.

    Song, J.I., and Grandis, J.R. (2000). STAT signaling in head and neck cancer. Oncogene 19, 2489-2495.

    Su, C.C., Yang, H.F., Huang, S.J., and Lian Ie, B. (2007). Distinctive features of oral cancer in Changhua County: high incidence, buccal mucosa preponderance, and a close relation to betel quid chewing habit. Journal of the Formosan Medical Association = Taiwan yi zhi 106, 225-233.

    Sudbo, J., Lee, J.J., Lippman, S.M., Mork, J., Sagen, S., Flatner, N., Ristimaki, A., Sudbo, A., Mao, L., Zhou, X., et al. (2005). Non-steroidal anti-inflammatory drugs and the risk of oral cancer: a nested case-control study. Lancet 366, 1359-1366.

    Sugahara, K.N., Teesalu, T., Karmali, P.P., Kotamraju, V.R., Agemy, L., Girard, O.M., Hanahan, D., Mattrey, R.F., and Ruoslahti, E. (2009). Tissue-penetrating delivery of compounds and nanoparticles into tumors. Cancer cell 16, 510-520.

    Sugahara, K.N., Teesalu, T., Karmali, P.P., Kotamraju, V.R., Agemy, L., Greenwald, D.R., and Ruoslahti, E. (2010). Coadministration of a tumor-penetrating peptide enhances the efficacy of cancer drugs. Science 328, 1031-1035.

    Takagi, S., Hirata, T., Agata, K., Mochii, M., Eguchi, G., and Fujisawa, H. (1991). The A5 antigen, a candidate for the neuronal recognition molecule, has homologies to complement components and coagulation factors. Neuron 7, 295-307.

    Takagi, S., Tsuji, T., Amagai, T., Takamatsu, T., and Fujisawa, H. (1987). Specific cell surface labels in the visual centers of Xenopus laevis tadpole identified using monoclonal antibodies. Developmental biology 122, 90-100.

    Takahashi, T., Fournier, A., Nakamura, F., Wang, L.H., Murakami, Y., Kalb, R.G., Fujisawa, H., and Strittmatter, S.M. (1999). Plexin-neuropilin-1 complexes form functional semaphorin-3A receptors. Cell 99, 59-69.

    Wei, L.H., Kuo, M.L., Chen, C.A., Chou, C.H., Lai, K.B., Lee, C.N., and Hsieh, C.Y. (2003). Interleukin-6 promotes cervical tumor growth by VEGF-dependent angiogenesis via a STAT3 pathway. Oncogene 22, 1517-1527.

    Widschwendter, A., Tonko-Geymayer, S., Welte, T., Daxenbichler, G., Marth, C., and Doppler, W. (2002). Prognostic significance of signal transducer and activator of transcription 1 activation in breast cancer. Clinical cancer research : an official journal of the American Association for Cancer Research 8, 3065-3074.

    Xi, S., Gooding, W.E., and Grandis, J.R. (2005). In vivo antitumor efficacy of STAT3 blockade using a transcription factor decoy approach: implications for cancer therapy. Oncogene 24, 970-979.

    Yang, T.S., Wang, J.Y., Tang, R., Hsu, K.C., and Chen, J.S. (2002). Oral uracil/ftorafur (UFT) plus leucovorin as first-line chemotherapy and salvage therapy with weekly high-dose 5-fluorouracil/leucovorin for the treatment of metastatic colorectal cancer. Japanese journal of clinical oncology 32, 352-357.

    Yaqoob, U., Cao, S., Shergill, U., Jagavelu, K., Geng, Z., Yin, M., de Assuncao, T.M., Cao, Y., Szabolcs, A., Thorgeirsson, S., et al. (2012). Neuropilin-1 stimulates tumor growth by increasing fibronectin fibril assembly in the tumor microenvironment. Cancer research 72, 4047-4059.

    Yue, P., and Turkson, J. (2009). Targeting STAT3 in cancer: how successful are we? Expert opinion on investigational drugs 18, 45-56.

    Zacchigna, S., Pattarini, L., Zentilin, L., Moimas, S., Carrer, A., Sinigaglia, M., Arsic, N., Tafuro, S., Sinagra, G., and Giacca, M. (2008). Bone marrow cells recruited through the neuropilin-1 receptor promote arterial formation at the sites of adult neoangiogenesis in mice. The Journal of clinical investigation 118, 2062-2075.

    Zhang, S., Zhau, H.E., Osunkoya, A.O., Iqbal, S., Yang, X., Fan, S., Chen, Z., Wang, R., Marshall, F.F., Chung, L.W., et al. (2010). Vascular endothelial growth factor regulates myeloid cell leukemia-1 expression through neuropilin-1-dependent activation of c-MET signaling in human prostate cancer cells. Molecular cancer 9, 9.

    下載圖示 校內:2018-08-27公開
    校外:2018-08-27公開
    QR CODE