| 研究生: |
黃緗淳 Huang, Xiang-Chun |
|---|---|
| 論文名稱: |
量子位元對的純消相位動力學過程的不同非馬可夫測度之比較 Comparison of Different Non-Markovianity Measures for Pure Dephasing Dynamics of a Pair of Qubit |
| 指導教授: |
陳宏斌
Chen, Hong-Bin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 英文 |
| 論文頁數: | 45 |
| 中文關鍵詞: | 純消相位 、非馬可夫測度 、量子位元對 、比較 |
| 外文關鍵詞: | pure dephasing , non-Markovianity measures, qubit pair, comparison |
| 相關次數: | 點閱:178 下載:35 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
探討隨時間演化的Kossakowski矩陣的積範數的負值與BLP、LFS、RHP、糾纏、量子不和諧(Quantum Discord)以及伴正定演算法(SDP)的非馬可夫測度的關係。在BLP、LFS及SDP測度,量子位元對與環境耦合強度的比愈大,非馬可夫性在歐姆性為縱軸與相對相位為橫軸的平面上,可探測到的非馬可夫性分布較廣,但高峰值下降。而基於動力學半群理論以及量子動力學過程是否具有可分性的 Kossakowski 矩陣測度和 RHP 測度,量子位元對與環境耦合強度有正比關係。而量子不和諧測度得出的結果,與我們使用的其他測度所量測出的非馬可夫性的趨勢不相似,與量子位元對與環境耦合強度沒有正比關係且歐姆環境模數s<2量測不到非馬可夫性,也與[Sci. Rep. 11, 10046 (2021)]所說有所不同的,當歐姆環境模數s<2觀測不到非馬可夫性。最後,基於正偏轉置(PPT)準則的糾纏測量結果對於維度高於量子位元對的情況來說不夠強。
The relationship between the negative value of the trace norm of the time evolving Kossakowski matrix and the non-Markovianity measures of the BLP, LFS, RHP, entanglement, quantum discord, and the SDP (semidefinite program) measured are discussed. In the BLP, LFS, and SDP measurements, the ratio of the coupling strength of the qubit pair to the environment is larger. The non-Markovianity distribution is wider, but the high peak drops on the plane, where the ohmicity is the vertical axis and the relative phase is the horizontal axis. Based on the theory of dynamical semigroups and whether the quantum dynamic process is divisibility for the Kossakowski matrix measure and the RHP measure, they are proportional to the ratio of the coupling strength between the qubit pair and the environment; in contrast, the quantum discord measures do not show such behavior. Moreover, the latter two measures can even capture the non-Markovianity when the Ohmicities less than 2, which is typically considered to be Markovian as shown in existing literature [Sci. Rep. 11, 10046 (2021) 1]. Finally, the results of the entanglement measure based on positive partial transpose (PPT) criterion are not strong enough for the case of dimension higher than qubit pair.
[1] H.-B. Chen and Y.-N. Chen, Canonical Hamiltonian Ensemble Representation of Dephasing Dynamics and the Impact of Thermal Fluctuations on Quantum-to-Classical Transition, Sci Rep 11, 10046 (2021).
[2] H.-P. Breuer and F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, Oxford, 2007).
[3] V. Gorini, Andrzej Kossakowski and E. C. G. Sudarshan, Completely Positive Dynamical Semigroups of N-Level Systems, J. Math. Phys. 17, 821 (1976).
[4] E. Andersson, J. D. Cresser, and M. J. W. Hall, Finding the Kraus Decomposition from a Master Equation and Vice Versa, Journal of Modern Optics 54, 1695 (2007).
[5] H.-P. Breuer, E.-M. Laine, and J. Piilo, Measure for the Degree of Non-Markovian Behavior of Quantum Processes in Open Systems, Phys. Rev. Lett. 103, 210401 (2009).
[6] S. Luo, S. Fu, and H. Song, Quantifying Non-Markovianity via Correlations, Phys. Rev. A 86, 044101 (2012).
[7] Á. Rivas, S. F. Huelga, and M. B. Plenio, Entanglement and Non-Markovianity of Quantum Evolutions, Phys. Rev. Lett. 105, 050403 (2010).
[8] Z. Zhang, Y. Dai, Y.-L. Dong, and C. Zhang, Numerical and Analytical Results for Geometric Measure of Coherence and Geometric Measure of Entanglement, Sci Rep 10, 12122 (2020).
[9] N. Lambert, Y.-N. Chen, Y.-C. Cheng, C.-M. Li, G.-Y. Chen, and F. Nori, Quantum Biology, Nature Phys 9, 10 (2013).
[10] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, 10th anniversary ed (Cambridge University Press, Cambridge ; New York, 2010).
[11] G. Lindblad, On the Generators of Quantum Dynamical Semigroups, Commun.Math. Phys. 48, 119 (1976).
[12] H.-B. Chen, J.-Y. Lien, G.-Y. Chen, and Y.-N. Chen, Hierarchy of Non-Markovianity and k -Divisibility Phase Diagram of Quantum Processes in Open Systems, Phys. Rev. A 92, 042105 (2015).
[13] H. B. Chen, Topic5 Open Quantum Systems (Dynamics), Class Handouts, Introduction to Engineering Quantum Physics., (n.d.).
[14] M. Jiang, S. Luo, and S. Fu, Channel-State Duality, Phys. Rev. A 87, 022310 (2013).
[15] R. Alicki and K. Lendi, Quantum Dynamical Semigroups and Applications (Springer-Verlag, Berlin ; New York, 2007).
[16] M.-D. Choi, Completely Positive Linear Maps on Complex Matrices, Linear Algebra and Its Applications 10, 285 (1975).
[17] A. Jamiołkowski, Linear Transformations Which Preserve Trace and Positive Semidefiniteness of Operators, Reports on Mathematical Physics 3, 275 (1972).
[18] H. Ollivier and W. H. Zurek, Quantum Discord: A Measure of the Quantumness of Correlations, Phys. Rev. Lett. 88, 017901 (2001).
[19] H. M. Wiseman, S. J. Jones, and A. C. Doherty, Steering, Entanglement, Nonlocality, and the Einstein-Podolsky-Rosen Paradox, Phys. Rev. Lett. 98, 140402 (2007).
[20] F. F. Fanchini, T. Werlang, C. A. Brasil, L. G. E. Arruda, and A. O. Caldeira, Non-Markovian Dynamics of Quantum Discord, Phys. Rev. A 81, 052107 (2010).
[21] Y.-C. Liang, Y.-H. Yeh, P. E. M. F. Mendonça, R. Y. Teh, M. D. Reid, and P. D. Drummond, Quantum Fidelity Measures for Mixed States, Rep. Prog. Phys. 82, 076001 (2019).
[22] A. Streltsov, U. Singh, H. S. Dhar, M. N. Bera, and G. Adesso, Measuring Quantum Coherence with Entanglement, Phys. Rev. Lett. 115, 020403 (2015).
[23] M. J. W. Hall, J. D. Cresser, L. Li, and E. Andersson, Canonical Form of Master Equations and Characterization of Non-Markovianity, Phys. Rev. A 89, 042120 (2014).