簡易檢索 / 詳目顯示

研究生: 陳佳榆
Chen, Chia-Yu
論文名稱: 應用模糊規劃理論探討碳稅對於台灣工業部門、運輸部門及服務部門的減排效果
The Mitigating Effect of Carbon Tax on Industry, Transport and Service in Taiwan by Fuzzy Goal Programming
指導教授: 張瀞之
Chang, Ching-Chih
學位類別: 碩士
Master
系所名稱: 管理學院 - 交通管理科學系
Department of Transportation and Communication Management Science
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 88
中文關鍵詞: 二氧化碳減量灰預測模型模糊碳碳補貼
外文關鍵詞: carbon reduction, grey forecasting model, fuzzy, carbon tax, subsidy
相關次數: 點閱:191下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於經濟快速發展,人類大量使用煤與石油等化石燃料,使得溫室氣體濃度不斷地增加造成對生態環境不可逆的污染與破壞。其中又以二氧化碳為大宗。
    隨著全球氣候變暖的壓力,為防止因二氧化碳的高排放量及高成長率導致氣候變遷持續惡化的情形,台灣行政院已提出國家節能減碳總計畫,此計畫之減量目標為於2025年回歸2000年二氧化碳排放水準。本文採用灰色預測模型(GM)和模糊目標規劃(FGP)建立一二氧化碳減量模型,針對工業,運輸和服務部門進行探討,並為各部門找到一個最適的台灣的碳稅稅額,以期達到政府的減量目標。行政院所擬定之初始稅率為每噸二氧化碳需課徵2.51美元,每年增加額度為2.51美元,在10年後才能達到每噸二氧化碳的美國25.13美元。結果顯示出,在此碳稅的稅額下,是無法達到政府所預定的減量目標,如只針對碳稅稅額而無其他減排政策,政府必須提高稅率,達到排放目標。另外,為了減少對經濟增長的影響時,政府在徵收碳稅的同時,也應該制定完整的補貼策施。

    Due to rapid economic development, greenhouse gases (GHG), especially CO2, continue to increase and lead to irreversible environmental damage. With the pressure of global warming, The Executive Yuan of Taiwan has proposed to reduce the amount of CO2 emissions to the level of the 2000 by 2025. This paper uses Grey Forecasting model (GM) and Fuzzy Goal Programming (FGP) to construct a carbon dioxide reduction model, and find an optimal carbon tax scenario for Taiwan to achieve that level. Industry, transport and service sectors are discussed. The initial tax rate of is US$2.51 per tonne of CO2 will take 10 years to reach a total of US$25.13 per tonne of CO2. The results show that the tax rate must be raised to reach the target emission goal. To decrease the impact on economic growth when levying a carbon tax, the government of Taiwan is looking at initiating a subsidy policy.

    CONTENT 摘要 i ABSTRACT ii CONTENT iv TABLE. v FIGURE vii CHAPTER ONE 1 INTRODUCTION 1 1.1 Background 1 1.2 Motivation 4 1.3 Aim of the study 5 1.4 Study Framework 6 CHAPTER TWO 8 LITERATURE REVIEW 8 2.1 Review of carbon tax literature 8 2.2 Review of Grey Forecasting model literature 11 2.3 Review of Fuzzy Goal Programming Literature 12 CHAPTER THREE 16 METHODOLOGY 16 3.1 Data source and processing 16 3.2 The construction of GM theory 17 3.3 CO2 reduction model 20 3.4 Calculation of parameters of CO2 reduction model 22 CHAPTER FOUR 25 EMPIRICAL ANALYSIS 25 4.1Anlysis of grey forecasting results 25 4.2 Results of basic scenario 65 4.3 The scenario for an optimal tax rate 67 4.4 Results of optimal scenario 71 4.5 The impact on GDP of each sector 77 CHAPTER FIVE 82 CONCLUSION AND SUGGESTIONS 82 5.1 Conclusions and Suggestions 82 5.2 Limitation 84 REFERENCE 85 TABLE Table 1-1 The tax rate for each year 2012 to 2021 6 Table 3-1 Industries classification 17 Table 4-1 The actual and predicted values of the total output in the transport sector 26 Table 4-2 The predicted value and upper envelope of total output in the transport sector 26 Table 4-3 The actual and predicted values of GDP in the transport sector 28 Table 4-4 The predicted value and lower envelope of GDP in the transport sector 28 Table 4-5 The predicted and actual values of CO2 emissions in the transport sector 30 Table 4-6 The predicted value and upper envelope of CO2 emissions in the transport sector 30 Table 4-7 The predicted and actual values of energy consumption in the transport sector 32 Table 4-8 The predicted value and upper envelope of energy consumption in the transport sector 32 Table 4-9 The actual and predicted values of total output in the industry sector 34 Table 4-10 The predicted value and upper envelope of total output in the industry sector 34 Table 4-11 The actual and predicted values of GDP in industry sector 36 Table 4-12 The lower envelope and predicted value of GDP in the industry sector 36 Table 4-13 The predicted and actual value of CO2 emissions in the industry sector 38 Table 4-14 The upper envelope and predicted value of CO2 emissions in the industry sector 38 Table 4-15 The predicted and actual values of energy consumption in the industry sector 40 Table 4-16 The predicted value and upper envelope of energy consumption in the industry sector 40 Table 4-17 The actual and predicted values of total output in the service sector 42 Table 4-18 The predicted value and upper envelope of total output in the service sector 42 Table 4-19 The actual and predicted values of GDP in the service sector 44 Table 4-20 The lower envelope and predicted value of GDP in the service sector 44 Table 4-21 The actual and predicted values of CO2 emissions in the service sector 46 Table 4-22 The upper envelope and predicted value of CO2 emissions in the service sector 46 Table 4-23 The actual and predicted values of energy consumption in the service sector 48 Table 4-24 The predicted value and upper envelope of energy consumption in the service sector 48 Table 4-25 The actual and predicted values of total output in the road transport sector 50 Table 4-26 The predicted value and upper envelope of total output in the road transport sector 50 Table 4-27 The actual and predicted values of GDP in the road transport sector 52 Table 4-28 The predicted value and lower envelope of GDP in the road transport sector 52 Table 4-29 The actual and predicted value of CO2 emissions in the road transport sector 54 Table 4-30 The upper envelope and predicted value and of CO2 emissions in the road transport sector 54 Table 4-31 The predicted and actual values of energy consumption in the road transport sector 56 Table 4-32 The predicted value and upper envelope of energy consumption in the road transport sector 56 Table 4-33 The actual and predicted values of total output in the aviation transport sector 58 Table 4-34 The predicted value and upper envelope of total output in the aviation transport sector 58 Table 4-35 The predicted and actual value of GDP in aviation (million US$) 59 Table 4-36 The predicted value and lower envelope of GDP in the aviation transport sector 60 Table 4-37 The actual and predicted value of CO2 emissions in the aviation transport sector 61 Table 4-38 The upper envelope and predicted value of CO2 emissions in the aviation transport section 61 Table 4-39 The actual and predicted values of energy consumption in the aviation transport sector 63 Table 4-40 The predicted value and upper envelope of energy consumption in the aviation transport sector 63 Table 4-41 Tax rate for each energy type 65 Table 4-42 Optimal tax rate for the transport sector and each energy type 67 Table 4-43 Optimal tax rate for the industry sector and each energy type 68 Table 4-44 Optimal tax rate for the service sector and each energy type 69 Table 4-45 Optimal tax rate for the road transport sector and each energy type 70 Table 4-46 Optimal tax rate for the aviation transport sector and each energy type 71 FIGURE Fig.1-1 Study Framework 7 Fig.4-1 The predicted value and upper envelope of total output in transport sector 27 Fig.4-2 The predicted value and lower envelope of GDP in the transport sector 29 Fig.4-3 The predicted value and upper envelope of CO2 emissions in the transport sector 31 Fig.4-4 The predicted value and upper envelope of energy consumption in the transport sector 33 Fig.4-5 The predicted value and upper envelope of total output in the industry sector 35 Fig.4-6 The predicted value and lower envelope of GDP in the industry sector 37 Fig.4-7 The predicted value and upper envelope of CO2 emission in the industry sector 39 Fig.4-8 The predicted value and upper envelope of energy consumption in the industry sector 41 Fig.4-9 The predicted value and upper envelope of total output in the service sector 43 Fig.4-10 The predicted value and lower envelope of GDP in the service sector 45 Fig.4-11 The predicted value and upper envelope of CO2 emissions in the service sector 47 Fig.4-12 The predicted value and upper envelope of energy consumption in the service sector 49 Fig.4-13 The predicted value and upper envelope of total output in the road transport sector 51 Fig.4-14 The predicted value and lower envelope of GDP in the road transport sector 53 Fig.4-15 The predicted value and upper envelope of CO2 emissions in the road transport sector 55 Fig.4-16 The predicted value and upper envelope of energy consumption in the road transport sector 57 Fig.4-17 The predicted value and upper envelope of total output in the aviation transport sector 59 Fig.4-18 The predicted value and lower envelope of GDP in the aviation transport sector 60 Fig.4-19 The predicted value and upper envelope of CO2 emissions in aviation transport sector 62 Fig.4-20 The predicted value and upper envelope of energy consumption in the aviation transport sector 64 Fig.4-21 CO2emission of water transport from 1999 to 2010 64 Fig.4-22 CO2 emissions of the transport sector from basic scenario for 2013 to 2025 66 Fig.4-23 CO2 emissions of the industry sector from basic scenario for 2013 to 2025. 66 Fig.4-24 CO2 emissions of the service sector from basic scenario for 2013 to 2025..66 Fig.4-25 CO2 emissions of the transport sector from optimal scenario 71 Fig.4-26 CO2 emissions of the industry sector from optimal scenario 71 Fig.4-27 CO2 emissions of the service sector from optimal scenario 72 Fig.4-28 CO2 emissions of road transport from optimal scenario 73 Fig.4-29 CO2 emissions of the aviation transport sector from optimal scenario 74 Fig.4-30 CO2 emissions of the transport sector from optimal scenario and without tax 75 Fig.4-31 CO2 emissions of the industry sector from optimal scenario and without tax 75 Fig.4-32 CO2 emissions of the service sector from optimal scenario and without tax 75 Fig.4-33 CO2 emissions of the road transport sector from optimal scenario and without tax 76 Fig.4-34 CO2 emissions of the aviation transport sector from optimal scenario and without tax 76 Fig.4-35 GDP of the transport sector under optimal scenario and without tax 77 Fig.4-36 GDP of the industry sector under optimal scenario tax and without tax 77 Fig.4-37 GDP of the service sector under optimal scenario and without tax 78 Fig.4-38 GDP of the road transport sector under optimal scenario and without tax 78 Fig.4-39 GDP of the aviation sector under optimal scenario and without tax 78 Fig.4-40 CO2 emissions per GDP 80 Fig.4-41 The mitigating effect from each scenario of the transport sector 80 Fig.4-42 The mitigating effect from each scenario of the industry sector 81 Fig.4-43 The mitigating effect from each scenario of the service sector 81

    1. Arkan, F., & Gungor, Z. (2001). An application of fuzzy goal programming to a multiobjective project network problem. Fuzzy Sets and Systems, 119, 49-58.
    2. Bor, Y. J., & Huang, Y. (2011). Energy taxation and the double dividend effect in Taiwan’s energy conservation policy—an empirical study using a computable general equilibrium model. Energy Policy, 38, 2086–2100.
    3. Baranzini, A., Goldemberg, J., & Speck, S. (2000). A future for carbon taxes.
    Ecological Economics, 32, 395–412.
    4. Bureau of Energy, Minstry of Economic Affairs. (2010). Energy development programme policy assessments Manual.
    5. Chen, H. C., Hsu, T. S., Tseng, K. C., & Hu, Y. C. (2003). Using Possibility Gray forecasting and fuzzy regression in analyzing stock-market price. Journal of Information Management, 12.
    6. Cheng, N. P. (1997). Environment mathematical system optimization principle. Kaohsiung, Taiwan.
    7. Cheng, Y. F. (2007). Model Development and Application of Linkage Effects between Industry, Energy and CO2 Reduction. Department of Environmental Engineering, National Cheng Kung University, Taiwan, R.O.C.
    8. Directorate General of Budget, Accounting and Statistics, Executive Yuan, R.O.C. (1996). Input-Output tables (45) sectors.
    9. Directorate General of Budget, Accounting and Statistics, Executive Yuan, R.O.C. (1999). Input-Output tables (45) sectors.
    10. Directorate General of Budget, Accounting and Statistics, Executive Yuan, R.O.C. (2001). Input-Output tables (45) sectors.
    11. Directorate General of Budget, Accounting and Statistics, Executive Yuan, R.O.C. (2004). Input-Output tables (45) sectors.
    12. Directorate General of Budget, Accounting and Statistics, Executive Yuan, R.O.C. (2006). Input-Output tables (45) sectors.
    13. Deng, J.L., Kuo, H. (1996). The theory of grey forecast and implication.
    14. Executive Yuan, R.O.C. (2009). The research of green tax reform. Chung-Hua Institution for Economic Research.
    15. Feng, C. M., & Chiou, Y. C. (2004). Research Methodology. Hsinchu, Taiwan.
    16. Hofer, C., Dresner, M. E., & Windle, R. J. (2010). The environmental effects of airline carbon emissions taxation in the US. Transportation Research Part D, 15, 37–45.
    17. Hwang, M. C., Lin, C. W., & Yeh, W. C. (2010). Forecasting Module and Empirical Analysis for Green House Gas Emissions of Taiwan Transportation Sectors. Carbon Economic, 17, 2-27.
    18. Hsieh, K. M. (1997). A study of the Grey Forecasting in the life insurance ratio. Journal of National Kaohsiung Institute of Technology, 27, 345-356.
    19. Kim, Y. D., Han, H. O., & Moon, Y. S. (2011). The empirical effects of a gasoline tax on CO2 emissions reductions from transportation sector in Korea. Energy Policy, 39, 981–989.
    20. Kuo, N. F., Yang, H. Y., & Wen, L. C. (1999). Double dividend of carbon tax revenue recycling effect: Taiwan multisectoral CGE empirical model. Soochow University economic seminar.
    21. Lee, C. F., Lin, S. J., Lewis, C., & Chang, Y. F. (2007). Effects of carbon taxes on different industries by fuzzy goal programming: A case study of the
    甲、 petrochemical-related industries, Taiwan. Energy Policy, 35, 4051–4058.
    22. Lu, I. J., Lewis, C., & Lin, S. J. (2009). The forecast of motor vehicle, energy demand and CO2 emission from Taiwan’s road transportation sector. Energy Policy, 37, 2952–2961.
    23. Lu, C., Tong, Q., & Liu, X. (2010). The impacts of carbon tax and complementary policies on Chinese economy. Energy Policy, 38, 7278–7285.
    24. Lee, Y. S., Tong, L.I. (2011). Forecasting energy consumption using a grey model improved by incorporating genetic programming. Energy Conversion and Management, 52, 147–152.
    25. Lin, S.J, Chang, Y.F, & Lee, C.F. (1999). The forecast of co2 reduction model and impact analysis of cement industry. Energy Quarterly, 29, 2-16。
    26. Liang, Q.Y. (2008). Impacts of Carbon Taxes on Taiwan’s CO2 Emission and Economic Development. Academia Sinica, Taiwan.
    27. Liang, Q.Y. (2009). Impacts of Energy Taxes on Taiwan’s energy demand Economic Development. Academia Sinica, Taiwan.
    28. Lin, T. C. (2008). Prediction of the variations of air passengers and air cargo by grey theory and Artificial Neural Network. Master dissertation, Department of Aeronautics and Astronautics, National Cheng Kung University, Taiwan, R.O.C.
    29. Lu, B. W. (2006). A study of prediction model on medical expense of the NHI Bureau- An application of GPT. Department of Insurance Chaoyang University of Technology.
    30. Scrimgeour, F., Oxley, L., & Fatai, K. (2005). Reducing carbon emissions?
    The relative effectiveness of different types of environment tax: the case of New Zealand. Environmental Modelling and Software, 20,1439–1448.
    31. Tol, R. S. J. (2007). The impact of a carbon tax on international tourism. Transportation Research Part D, 12, 129–142.
    32. Wu, C. H. (2005). The Study on the Prediction of Visitor Capacity in Meishan Visitor Center, Yushan National Park. Ministry of the Interior. R.O.C.
    33. Wen, H. Y. (2008). Shipment Forecasting and Freight Demand Forecasting Models for Collaborative Transportation Management in Supply Chain. National Science Council (NO. NSC 97-2218-E-032-006).
    34. Executive Yuan, Taiwan.
    http://www.dgbas.gov.tw/mp.asp?mp=1
    35. Bureau of Energy Ministry of Economic Affairs, Taiwan
    http://www.moeaboe.gov.tw/
    36. World Resource Institute, WRI
    http://cait.wri.org/
    37. International Energy Agency, IEA
    http://www.iea.org/

    無法下載圖示 校內:2017-07-20公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE