| 研究生: |
藍紫芸 Lan, Tzu-Yun |
|---|---|
| 論文名稱: |
利用液滴輔助方法合成金屬有機框架 Droplet-Assisted Synthesis of Metal-Organic Frameworks |
| 指導教授: |
莊怡哲
Juang, Yi-Je |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 83 |
| 中文關鍵詞: | 金屬有機框架 、液滴 、矽油 、比表面積分析 、亞硝酸鹽感測 |
| 外文關鍵詞: | metal-organic frameworks(MOFs), droplet, silicone oil, specific surface area analysis, electrochemical nitrite detection |
| 相關次數: | 點閱:145 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究將前驅溶液填入針筒,透過幫浦推動針筒使針頭尖端產生液滴,液滴滴落後撞擊玻璃瓶中矽油,蒐集完成後加熱進行反應,建立液滴輔助合成金屬有機框架的操作平台。以傳統溶劑熱法合成金屬有機框架PCN-222,可得到約20微米大小的柱狀結晶,而利用液滴輔助合成在適當的條件下能夠有效限制PCN-222的結晶長度在4~5微米。
研究結果顯示,透過針頭輔助可生成15~200 μm的液滴,體積流率為0.06~0.60 ml/min。其中,撞擊高度和體積流率對PCN-222結晶的影響較不顯著;而使用直徑較小的24G(0.55 mm)針頭相較直徑較大的19G(1.1 mm)針頭,可以得到較平滑且較多的柱狀結晶。同時縮短反應時間並比較兩種合成方式的差異,在傳統批次合成中,隨反應時間調降至8小時,結晶長度有明顯縮短至6.5 μm,但結晶變得較破碎;而針頭產生液滴輔助合成,結晶長度有隨反應時間下降而縮短,較不顯著,約落在4~5 μm。根據BET分析的結果以及SEM拍攝下觀察到的結晶型態,利用液滴輔助合成PCN-222可以在反應時間縮短為12小時的情況下,得到與傳統批次合成48小時的比表面積結果相近,為2441 m2/g。
In this study, a droplet-assisted method for synthesis of metal-organic framework was established. For conventional synthesis of PCN-222, the columnar crystal with the size of about 20 μm was obtained. However, under appropriate conditions, the crystal length of PCN-222 was decreased to 4~5 μm via the droplet-assisted method. The results showed that the impact height and volume flow rate did not influence crystallization of PCN-222 while using the syringe needle with a smaller diameter led to smoother and more columnar crystals compared to the syringe needle with a larger diameter. For the conventional batch synthesis, the crystal length was significantly affected by the reaction time and it was decreased to 6.5 μm as the reaction time was reduced to 8 h. On the other hand, the crystal length was not affected by the reaction time when applying the droplet-assisted method, which was about 4~5 μm. Based on the results of BET analysis and the crystal morphology, the specific surface area of PCN-222 synthesized by droplet-assisted method at reduced reaction time was comparable to that synthesized through conventional bath process, which is 2441 m2/g.
[1] H.-C. Zhou, J. R. Long, and O. M. Yaghi, "Introduction to metal–organic frameworks," 2, ACS Publications, 2012, pp. 673-674.
[2] H. Furukawa, K. E. Cordova, M. O'Keeffe et al., “The chemistry and applications of metal-organic frameworks,” Science, vol. 341, no. 6149, pp. 1230444, Aug 30, 2013.
[3] P. Z. Moghadam, A. Li, S. B. Wiggin et al., “Development of a Cambridge Structural Database Subset: A Collection of Metal-Organic Frameworks for Past, Present, and Future,” Chemistry of Materials, vol. 29, no. 7, pp. 2618-2625, Apr, 2017.
[4] K. K. Gangu, S. Maddila, S. B. Mukkamala et al., “A review on contemporary Metal-Organic Framework materials,” Inorganica Chimica Acta, vol. 446, pp. 61-74, May, 2016.
[5] N. A. A. Qasem, R. Ben-Mansour, and M. A. Habib, “An efficient CO2 adsorptive storage using MOF-5 and MOF-177,” Applied Energy, vol. 210, pp. 317-326, Jan, 2018.
[6] Y. P. Shi, S. S. Wu, Z. G. Wang et al., “Mixed matrix membranes with highly dispersed MOF nanoparticles for improved gas separation,” Separation and Purification Technology, vol. 277, pp. 9, Dec, 2021.
[7] Q. Wang, G. X. Yang, Y. J. Fu et al., “Nanospace Engineering of Metal-Organic Frameworks for Heterogeneous Catalysis,” Chemnanomat, vol. 8, no. 1, pp. 19, Jan, 2022.
[8] J. Z. Cao, J. H. Yun, N. A. H. Zhang et al., “Bifunctional Ag@Ni-MOF for high performance supercapacitor and glucose sensor,” Synthetic Metals, vol. 282, pp. 10, Dec, 2021.
[9] K. Suresh, and A. J. Matzger, “Enhanced Drug Delivery by Dissolution of Amorphous Drug Encapsulated in a Water Unstable Metal-Organic Framework (MOF),” Angewandte Chemie-International Edition, vol. 58, no. 47, pp. 16790-16794, Nov, 2019.
[10] P. Li, J. A. Modica, A. J. Howarth et al., “Toward Design Rules for Enzyme Immobilization in Hierarchical Mesoporous Metal-Organic Frameworks,” Chem, vol. 1, no. 1, pp. 154-169, Jul, 2016.
[11] T. D. Bennett, F. X. Coudert, S. L. James et al., “The changing state of porous materials,” Nature Materials, vol. 20, no. 9, pp. 1179-1187, Sep, 2021.
[12] N. Stock, and S. Biswas, “Synthesis of Metal-Organic Frameworks (MOFs): Routes to Various MOF Topologies, Morphologies, and Composites,” Chemical Reviews, vol. 112, no. 2, pp. 933-969, Feb, 2012.
[13] O. M. Yaghi, and H. L. Li, “HYDROTHERMAL SYNTHESIS OF A METAL-ORGANIC FRAMEWORK CONTAINING LARGE RECTANGULAR CHANNELS,” Journal of the American Chemical Society, vol. 117, no. 41, pp. 10401-10402, Oct, 1995.
[14] S. M. F. Lo, S. S. Y. Chui, L. Y. Shek et al., “Solvothermal synthesis of a stable coordination polymer with copper-I-copper-II dimer units: Cu-4{1,4-C6H4(COO)(2)}(3)(4,4 '-bipy)2 (n),” Journal of the American Chemical Society, vol. 122, no. 26, pp. 6293-6294, Jul, 2000.
[15] M. Moliner, J. M. Serra, A. Corma et al., “Application of artificial neural networks to high-throughput synthesis of zeolites,” Microporous and Mesoporous Materials, vol. 78, no. 1, pp. 73-81, Feb, 2005.
[16] R. Banerjee, A. Phan, B. Wang et al., “High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture,” Science, vol. 319, no. 5865, pp. 939-943, Feb, 2008.
[17] A. B. Panda, G. Glaspell, and M. S. El-Shall, “Microwave synthesis of highly aligned ultra narrow semiconductor rods and wires,” Journal of the American Chemical Society, vol. 128, no. 9, pp. 2790-2791, Mar, 2006.
[18] S. H. Jhung, J. H. Lee, and J. S. Chang, “Microwave synthesis of a nanoporous hybrid material, chromium trimesate,” Bulletin of the Korean Chemical Society, vol. 26, no. 6, pp. 880-881, Jun, 2005.
[19] Z. Ni, and R. I. Masel, “Rapid production of metal-organic frameworks via microwave-assisted solvothermal synthesis,” Journal of the American Chemical Society, vol. 128, no. 38, pp. 12394-12395, Sep, 2006.
[20] U. Mueller, H. Puetter, M. Hesse et al., "Method for electrochemical production of a crystalline porous metal organic skeleton material," Google Patents, 2011.
[21] K. S. Suslick, D. A. Hammerton, and R. E. Cline, “THE SONOCHEMICAL HOT-SPOT,” Journal of the American Chemical Society, vol. 108, no. 18, pp. 5641-5642, Sep, 1986.
[22] W. J. Son, J. Kim, J. Kim et al., “Sonochemical synthesis of MOF-5,” Chemical Communications, no. 47, pp. 6336-6338, 2008.
[23] Y. J. Zhang, and C. H. Chang, “Metal-Organic Framework Thin Films: Fabrication, Modification, and Patterning,” Processes, vol. 8, no. 3, pp. 46, Mar, 2020.
[24] S. Y. Lin, Y. Pineda-Galvan, W. A. Maza et al., “Electrochemical Water Oxidation by a Catalyst-Modified Metal-Organic Framework Thin Film,” Chemsuschem, vol. 10, no. 3, pp. 514-522, Feb, 2017.
[25] L. C. He, Y. Liu, J. Lau et al., “Recent progress in nanoscale metal-organic frameworks for drug release and cancer therapy,” Nanomedicine, vol. 14, no. 10, pp. 1343-1365, May, 2019.
[26] X. F. Zhang, J. Y. Han, J. Guo et al., “Engineering Nanoscale Metal-Organic Frameworks for Heterogeneous Catalysis,” Small Structures, vol. 2, no. 6, pp. 19, Jun, 2021.
[27] X. Y. Ren, and L. H. Lu, “Luminescent nanoscale metal-organic frameworks for chemical sensing,” Chinese Chemical Letters, vol. 26, no. 12, pp. 1439-1445, Dec, 2015.
[28] S. J. Yang, and C. R. Park, “Preparation of Highly Moisture-Resistant Black-Colored Metal Organic Frameworks,” Advanced Materials, vol. 24, no. 29, pp. 4010-4013, Aug, 2012.
[29] J. H. Cavka, S. Jakobsen, U. Olsbye et al., “A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability,” Journal of the American Chemical Society, vol. 130, no. 42, pp. 13850-13851, Oct, 2008.
[30] D. B. N. Lee, M. Roberts, C. G. Bluchel et al., “Zirconium: Biomedical and Nephrological Applications,” Asaio Journal, vol. 56, no. 6, pp. 550-556, Nov-Dec, 2010.
[31] V. Lykourinou, Y. Chen, X. S. Wang et al., “Immobilization of MP-11 into a Mesoporous Metal-Organic Framework, MP-11@mesoMOF: A New Platform for Enzymatic Catalysis,” Journal of the American Chemical Society, vol. 133, no. 27, pp. 10382-10385, Jul, 2011.
[32] M. J. Katz, J. E. Mondloch, R. K. Totten et al., “Simple and Compelling Biomimetic Metal-Organic Framework Catalyst for the Degradation of Nerve Agent Simulants,” Angewandte Chemie-International Edition, vol. 53, no. 2, pp. 497-501, Jan, 2014.
[33] X. Y. Zhu, J. L. Gu, Y. Wang et al., “Inherent anchorages in UiO-66 nanoparticles for efficient capture of alendronate and its mediated release,” Chemical Communications, vol. 50, no. 63, pp. 8779-8782, Aug, 2014.
[34] Z. W. Wei, Z. Y. Gu, R. K. Arvapally et al., “Rigidifying Fluorescent Linkers by Metal-Organic Framework Formation for Fluorescence Blue Shift and Quantum Yield Enhancement,” Journal of the American Chemical Society, vol. 136, no. 23, pp. 8269-8276, Jun, 2014.
[35] W. Morris, B. Volosskiy, S. Demir et al., “Synthesis, Structure, and Metalation of Two New Highly Porous Zirconium Metal-Organic Frameworks,” Inorganic Chemistry, vol. 51, no. 12, pp. 6443-6445, Jun, 2012.
[36] D. W. Feng, Z. Y. Gu, J. R. Li et al., “Zirconium-Metalloporphyrin PCN-222: Mesoporous Metal-Organic Frameworks with Ultrahigh Stability as Biomimetic Catalysts,” Angewandte Chemie-International Edition, vol. 51, no. 41, pp. 10307-10310, 2012.
[37] G. Y. Zhang, Y. H. Zhuang, D. Shan et al., “Zirconium-Based Porphyrinic Metal-Organic Framework (PCN-222): Enhanced Photoelectrochemical Response and Its Application for Label-Free Phosphoprotein Detection,” Analytical Chemistry, vol. 88, no. 22, pp. 11207-11212, Nov, 2016.
[38] X. Leng, H. L. Huang, W. P. Wang et al., “Zirconium-Porphyrin PCN-222: pH-responsive Controlled Anticancer Drug Oridonin,” Evidence-Based Complementary and Alternative Medicine, vol. 2018, pp. 12, 2018.
[39] P. Deria, D. A. Gomez-Gualdron, I. Hod et al., “Framework-Topology-Dependent Catalytic Activity of Zirconium-Based (Porphinato)zinc(II) MOFs,” Journal of the American Chemical Society, vol. 138, no. 43, pp. 14449-14457, Nov, 2016.
[40] K. Maindan, X. L. Li, J. R. Yu et al., “Controlling Charge-Transport in Metal-Organic Frameworks: Contribution of Topological and Spin-State Variation on the Iron-Porphyrin Centered Redox Hopping Rate,” Journal of Physical Chemistry B, vol. 123, no. 41, pp. 8814-8822, Oct, 2019.
[41] A. Rabenau, “The Role of Hydrothermal Synthesis in Preparative Chemistry,” Angewandte Chemie, vol. 24, pp. 1026-1040, 1985.
[42] L. Paseta, B. Seoane, D. Julve et al., “Accelerating the Controlled Synthesis of Metal-Organic Frameworks by a Microfluidic Approach: A Nanoliter Continuous Reactor,” Acs Applied Materials & Interfaces, vol. 5, no. 19, pp. 9405-9410, Oct, 2013.
[43] M. Faustini, J. Kim, G. Y. Jeong et al., “Microfluidic Approach toward Continuous and Ultrafast Synthesis of Metal-Organic Framework Crystals and Hetero Structures in Confined Microdroplets,” Journal of the American Chemical Society, vol. 135, no. 39, pp. 14619-14626, Oct, 2013.
[44] S. D. Bagi, A. S. Myerson, and Y. Roman-Leshkov, “Solvothermal Crystallization Kinetics and Control of Crystal Size Distribution of MOF-808 in a Continuous Flow Reactor,” Crystal Growth & Design, vol. 21, no. 11, pp. 6529-6536, Nov, 2021.
[45] C. G. Lin, W. Zhou, X. T. Xiong et al., “Digital Control of Multistep Hydrothermal Synthesis by Using 3D Printed Reactionware for the Synthesis of Metal-Organic Frameworks,” Angewandte Chemie-International Edition, vol. 57, no. 51, pp. 16716-16720, Dec, 2018.
[46] 洪啓祐, “探討利用液滴微流體合成金屬有機框架,” 2020.
[47] A. Tyowua, M. Targema, and B. Binks, “Comparison of Vegetable Oil-Silicone Oil Interfacial Tension Data from the du NoüyRing and the Spinning Drop Methods,” NIGERIAN ANNALS OF PURE AND APPLIED SCIENCES, vol. 1, pp. 209-213, 2018.
[48] Y. C. Chen, W. H. Chiang, D. Kurniawan et al., “Impregnation of Graphene Quantum Dots into a Metal-Organic Framework to Render Increased Electrical Conductivity and Activity for Electrochemical Sensing,” Acs Applied Materials & Interfaces, vol. 11, no. 38, pp. 35319-35326, Sep, 2019.
[49] I. Santos, R. R. Martelloti, P. F. Oliveira et al., “Development of microemulsions to reduce the viscocity of crude oil emulsions,” Fuel, vol. 210, pp. 684-694, Dec, 2017.