| 研究生: |
張欽荐 Chang, Chin-Jian |
|---|---|
| 論文名稱: |
以微機電技術研製粗糙面熱晶片及微噴流和微衝擊冷卻熱傳研究 Fabrication of a Rib-Roughened Thermal Chip by MEMS Techniques and Measurement of Free Micro Jet Flow and Impingement Cooling Heat Transfer |
| 指導教授: |
高騏
Gau, Chie |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 110 |
| 中文關鍵詞: | 微衝擊冷卻 、微噴流 |
| 外文關鍵詞: | free micro jet flow, impingement cooling heat transfer |
| 相關次數: | 點閱:117 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究的目的是以實驗的方法探討微噴流流場結構,以及熱晶片上之微噴流衝擊冷卻〈impingement cooling〉熱傳行為分析,並分別與理論值及巨觀下的情形作比較。粗糙面的製作是利用TMAH對矽之非等向性濕蝕刻加工方式製作,對矽基材蝕刻出高度150μm以及兩種不同肋節距。有關於粗糙面上微衝擊冷卻方面的資料也是相當少的,所以粗操面的製作是替接下來一系列的實驗預先作準備。
實驗是以雷諾數(Reynold number)介於16~640之間的自然噴流,衝擊光滑熱晶片,平板至噴嘴距離Z/B介於4~1600之間。吾人以熱晶片上的溫度感測器量測停滯點(stagnation point)及側向下游的溫度分布,並以此來計算局部的熱傳係數,吾人將探討其中之熱傳變化,以及微噴嘴衝擊在熱晶片上的熱傳特性。在流場結構量測方面,則以熱線測速儀,針對其不同的下游位置分別量測中心流速分佈、側向流速分佈以及紊流強度分佈的情形。
實驗結果發現微噴流在剪流層不穩定性的擾動太小而無足夠能量生成大尺度渦流結構,並且其層流結構的邊界層上產生相當大的速度梯度,這樣的速度梯度並未消耗噴流的動能,反倒是這些動能集中在噴流中心,使得中心的流速都來的比相似解的估算都要來的大。此外,在微噴流衝擊冷卻方面,發現其停滯點之最高熱傳係數值會受出口雷諾數的影響呈現反比的關係,且產生在壁面與噴嘴出口距離為數百倍至數十倍噴嘴寬度的位置。經研究發現該位置與微噴流之崩潰點位置相近,並且經由統計回歸分析所得的關係式為(Z/B)max = 24209/Re,其中L為紊流崩潰長度。最後,本研究藉由無因次參數(Re、X/B、Z/B及L/B)的引入,很成功的將停滯點、局部點及平均熱傳係數建立經驗關係式,可供微機電系統或CPU散熱設計的參考。
Experiments are performed to study the structure of a free micro-jet flow and micro-jet impingement cooling heat transfer over a thermal chip. In the current work, the thermal chip made was flat. The rib-roughened thermal chip was also made by etching the Si(100) wafer with TMAH. However, due to limitation of current thesis, the impingement cooling experiments over a rib-roughened wall were not made, but are ready for further studies.
For the micro-jet impingement cooling experiments, the local Nussult numbers distribution along the thermal chip were measured for the Reynolds number varying from 16 to 640, and the nozzle-to-spacings ratio from 4 to 1600. In addition, different size of nozzles, i.e. 50μm, 100μm, 200μm were used to assure different structures of micro-jet impinging on the wall. The effect of micro-jet impingement cooling study different width of nozzles. It is found that the location for the occurrence of maximum stagnation point Nusselt number decreases with increasing Reynolds number. This is attributed to the decrease of the breakdown length of the micro jet. The maximum stagnation point Nusselt number is expected to occur at the location where jet breaks down. A correlation of the location for the maximum stagnation point Nusselt number in terms of Reynolds numbers can be obtained as (Z/B)max = 24209/Re.
For the free micro-jet flow experiments, both flow visualization and velocity distribution measurements using hot wire anemometer were made. There are no coherence structures of vortex formation in the shear layer as appeared in the large-scale jet. It appears that even with large gradient of velocity in the shear layer, the most unstable wave in the shear layer is too weak to have enough energy to roll up into ring vortices for the micro-scale jet. However, the micro-jet has more enough energy in direction of centerline. So, the centerline velocity of micro-jet are highly more then similarity solution.
An attempt was first made to correlate the stagnation point Nusselt number in terms of relevant nondimensional parameters such as the Reynolds number and Z/B. This is done by first normalizing Z/B by dividing Z/B with L/B, i.e. Z/L. The correlation results show that all the stagnation point Nusselt numbers at the same Reynolds number can collapse approximately into a single curve, and these correlations are very successful. Similar kinds of correlations have also been obtained for both the average Nusselt number and the local Nusselt number.
01. Robbins, H. and Schwartz, B., “Chemical etching of silicon-I. The system, HF, HNO3 and H2O”, Journal of the Electrochemical Society, Vol. 106, pp. 505-508, 1959.
02. Frank, F. C. and Ives, M. B., “Orientation-dependent dissolution of germanium”, Journal of Applied Physics, Vol. 31, No. 11, pp. 1996-1999, 1960.
03. Kendall, D. L., “On etching very narrow grooves in silicon”, Applied Physics Letters, Vol. 26, pp. 195-198, 1975.
04. Bassous, E., “Fabrication of novel three-dimensional microstructures by the anisotropic etching of (100) and (110) silicon”, IEEE Transactions on Electron Devices, Vol. ED-25, No. 10, pp. 1178-1185, 1978.
05. Tabata, O., Asahi, R., Funabashi, H. and Sugiyama, S., “Anisotropic etching of silicon in TMAH solutions”, Sensors and Actuators A, Vol. A34, pp. 51-57, 1992.
06. Thong, L. T. L., Choi, W. K. and Chong, C. W., “TMAH etching of silicon and the interaction of etching parameters”, Sensors and Actuators A, Vol. A63, pp. 243-249, 1997.
07. Bhatnagar, Y. K. and Nathan, A., “On pyramidal protrusions in anisotropic etching of <100> silicon”, Sensors and Actuators A, Vol. A36, pp. 233-240, 1993.
08. Merlos, A., Acero, M., Bao, M. H., Bausells, J. and Esteve, J., “TMAH/IPA anisotropic etching characteristics”, Sensors and Actuators A, Vol. A37-A38, pp. 737-743, 1993.
09. 謝嘉銘, “TMAH非等向性濕蝕刻特性之應用與研究,” M. S. thesis, National Taiwan University, Taiwan, Republic of China, 2000.
10. H. A. Becker and T. A. Massaro, “Vortex Evolution in a Round Jet, ” J. Fluid Mech. Vol. 31, Part 3, pp. 435-448, 1968.
11. S. C. Crow and F. H. Champagne, “Orderly Structure in Jet Turbulence, ” J. F. M. Vol. 48, Part 3, pp. 547-591, 1971.
12. G. L. Brown and A. Roshko, “On Density Effects and Large Structure in Turbulent Mixing Layers, ” J. F. M. Vol. 64, Part 4, pp. 775-816, 1974.
13. Michalke, A., “On Spatitally Growing Disturbances in an Invicid Shear Layer”, Journal of Fluid Mechanics, Vol. 23, part3, pp.521-544, 1965.
14. Becker, H. and Massaro, T. A., “Vortex Evolution in a Round Jet”, J. Fluid Mech., Vol. 31, Part 3, pp. 435-448, 1968.
15. C. O. Winant and F. K. Browand, “Vortex Pairing : The Mechanism of Turbulent Mixing Layer Growth at Moderate Reynolds Number, ” J. F. M. Vol. 63, Part 2, pp. 237-255 (1974).
16. 許文勇, “聲頻和聲壓激擾對於衝擊冷卻熱傳效應之影響,” M. S. thesis, National Cheng Kung University, Taiwan, Republic of China, 1993.
17. 沈志華, “THERMAL CHIP FABRICATION WITH ARRAYS OF SENSORS AND HEATERS WITH ANALYSIS AND MEASUREMENTS OF MICRO SCALE IMPINGEMENT COOLING FLOW AND HEAT TRANSFER,” Ph. D. thesis, National Cheng Kung University, Taiwan, Republic of China, 2003.
18. H. Martin, “Heat and mass transfer between impinging gas jet and solid sursaces,” Advances in Heat Transfer. Vol.13, pp. 1-60, 1977.
19. Y. Becko, “Impingement cooling - a review,” Von karman institute for fluid dynamic, lecture series 83, turbine blade cooling , 1976.
20. C. D. Donaldson and R. S. Snedeker, “ A study of free jet impingement. Part 2. Free jet turbulence structure and impingement heat transfer,” J. Fluid Mech. Vol. 45, Part 3, pp. 477-512, 1971.
21. R. Gardon and J. Cobonpue, “Heat transfer between a flat plate and jets of air impinging on it” ASME Int. Developments in Heat Transfer. pp. 454-460, 1962.
22. R. Gardon and J. C. Akfirat, “Heat transfer characteristics of Impinging two dimension air jets”, ASEM J. Heat Transfer. Vol. 88, pp. 101-108, 1966.
23. R. Gardon and J. C. Akfirat, “The role of turbulence in determining the heat transfer characteristics of impinging jets,” Int. J. Heat Mass Transfer. Vol. 8, pp. 1261-1272, 1965.
24. C. J. Hoogendoorn, “The effect of turbulence on heat transfer at a stag- nation point,” Int. J. Heat Mass Transfer. Vol. 20, pp. 1333-1338, 1977.
25. C. Gau and C. M. Chung, “Surface Curvature Effect on Slot-air-jet Impingement Coiling Flow and Heat Transfer Process,” ASME J. Heat Transfer. Vol. 113, pp. 858-864, 1991.
26. 李一昌, “附三角肋粗造面上之衝擊冷卻,” M. S. thesis, National Cheng Kung University, Taiwan, Republic of China, 1994.
27. Schlichting, H. “Laminare Strahlenausbreitung,” Z. Angew Math. Mech., Vol. 13, pp. 260-263, 1933a.
28. H. Schlichting, “Boundary-Layer Theory,”McGraw-Hill Series in Mechanical Engineering, pp. 170-174, 1966.
29. 莊達人, “VLSI 製造技術,” 高立圖書, 臺北市, pp. 146-367, 1998.
30. Sparrow E. M., and Wang T. C., “Impingement Transfer Coefficients Due to Initially Laminar Slot Jets”, International Journal of Heat and Mass Transfer, Vol. 18, pp. 597-605, 1975.
31. 吳萬益 林清河,“Business Research Methods,” 華泰圖書, 臺北市, pp. 323-328, 2000.