| 研究生: |
郭弘斌 Kuo, Hung-Pin |
|---|---|
| 論文名稱: |
LIGA-like技術於三維微曲面結構之設計與製造 Design and Fabrication of a 3-D Structure with Micro-curved Surface using LIGA-like Technology |
| 指導教授: |
沈聖智
Shen, Sheng-Chih |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 系統及船舶機電工程學系 Department of Systems and Naval Mechatronic Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 100 |
| 中文關鍵詞: | LIGA-like 、微電鑄 、積木堆疊法 、三維曲面結構 、模造技術 |
| 外文關鍵詞: | LIGA-like, Electroforming, stacking blocks method, 3-D curved surface structure, Molding Technology |
| 相關次數: | 點閱:117 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文係以LIGA-like技術與積木堆疊方法,創新提出微型三維實體曲面結構之製作技術,以改變傳統製作正曲率之三維微曲面結構需要以複雜的模造方式。因此,本文提出以獨立電極圖案設計方法,藉由微電鑄的蔓延特性,製作不同單一角度三角單位元素角度之結構,其中電極圖案包含電極間距與電極寬度,利用電極間距與電極寬度設計出獨立的電極區塊,藉由電鑄過程的蔓延特性,使特定角度的斜面結構逐漸成形,並將其當成製作實體曲面之三角單位元素,以微小直線近似法為概念且引入積木堆疊法設計各種曲率的三維實體曲面結構,其中積木堆疊法概念為任意三維實體曲面可簡化為有限個三角單位元素組合,以建構三維微曲面結構。由本實驗證實,三角單位元素需以四個以上為考量,方可有較佳的曲面輪廓,在電鑄微結構時在內側增設多組獨立電極,利於以曲面或斜面之形成。利用此三維實體曲面結構製作技術,可成功完成各種曲率的曲面結構,此技術的開發將可有效簡化微模造製程步驟,並達成將三維實體曲面結構一次電鑄完成以取代傳統的模造製造技術之目的。
This study propose a novel 3-D micro-curved surface fabrication method with LIGA-like technology and stacking blocks method to simplify traditional 3-D micro-curved surface process. Thus, this study addresses the measure of pattern design of independent electrode. Because the spread traits of electroforming, this study manufactured elements structure in different tilt angle. There are two variables of pattern of electrode: the wide of an electrode, and the gape of adjacent electrodes. This thesis utilized above two variables to design the block of electrodes, used the spread traits of electrode to form slope structure gradually. The slope structure is the triangle-shaped element to form 3-D micro-curved surface. Similar to the concept of this approximation approach, this thesis used stacking blocks method to design and fabricate 3-D micro-curved surfaces in different curvatures. The stacking blocks method is that any uniform 3-D curve surface can be seen as assembles of finite number triangle-shaped element. Experimentally observed the curve surfaces form well at least four the triangle-shaped elements, and design lots of independent electrodes will form curve or slope structure favorably. By utilizing 3-D micro-curved surface fabrication technology, it can shape kinds of curve structure in different curvatures successfully and simplify the process of Molding fabrication.
參考文獻
【1】 M. Han, W. Lee, S.K. Lee, S.S. Lee, “3D microfabrication with inclined/rotated UV lithography,” Sensors and Actuators A: Physical, Vol. 111, pp. 14-20, 2004.
【2】 Y.K. Yoon, J.H. Park, M.G. Allen , “Multidirectional UV Lithography for Complex 3-D MEMS Structures,” Journal of Microelectromechanical System, Vol. 15, No. 5, pp. 14-20, October 2006.
【3】 S.J. Moon, S.S. Lee, “Fabrication of microneedle array using inclined LIGA process,” Transducers’03, Boston, Vol. 2, pp. 1542-1549, 2003.
【4】 K.Y. Hung, J.C. Liao, F.G. Tseng, H.P. Feng, H.H. Tsai, “Optimal Fabricate Technology of Polymer Micro Optical Mirror,” Industrial Technology ICIT 2008, pp. 1-6, 2008.
【5】 Y.J. Huang, T.L. Chang, H.P. Chou, C.H. Lin, “A Novel Fabrication Method for Forming Inclined Groove-Based Microstructures Using Optical Elements,” Japanese Journal of Applied Physics, Vol. 47, No. 6, pp. 5287–5290 , 2008.
【6】 G. Jiang, S. Baig, M. Wang, “3D Microstructures Fabricated by Prism-Assisted Inclined UV Lithography,” Proc. of SPIE, Vol. 8249, pp. 82490L-82490L-7, 2012.
【7】 O. Tabata, N. Matsuzuka, T. Yamaji, S. Uemura, K. Yamamoto, “3D fabrication by Moving Mask Deep X-ray Lithography (M2DXL) with multiple stages,” The Fifteenth IEEE International Conference on Micro Electro Mechanical Systems, pp. 180-183, 2002.
【8】 W. Däschner, P. Long, R. Stein, “General Aspheric Refractive Micro-Optics Fabricated by Optical Lithography Using a High Energy Beam Sensitive Glass Gray-Level Mask,”Journal of Vacuum Science & Technology B, Vol. 14, No. 6, pp. 3730-3733, 1996.
【9】 K. Reimer, H.J. Quenzer, M. Jürss, B. Wagner, “Micro-optic fabrication using one-level gray-tone lithography,” Proc. of SPIE, Vol. 3008, pp. 279-288, 1997.
【10】 A. Maciossek, “Electrodeposition of 3D microstructures without moulds,” Proc. of SPIE, Vol. 2879, pp. 275-279, 1996.
【11】 C.W. Baek, Y.K. Kim, “Novel Fabrication Process of Freestanding Metallic Microstructures Using Double Electroplating,” Japanese Journal of Applied Physics, Vol. 37 , pp. 7104-7109, 1998.
【12】 J.Y. Jin, J.H. Park, B.W. Yoo, Y.H. Jang, Y.K. Kim, “Numerical analysis and demonstration of a 2-DOF large-size micromirror with sloped electrodes,” Journal of Micromechanics and Microengineering, Vol. 21, No. 9, pp.1-12, 2011.
【13】 W.R. Cox, T. Chen, D.J. Hayes, “Micro-optics fabrication by ink-jet printing,” Optics & Photonics News, pp.32-35, 2001.
【14】 Z.D. Popovic, R.A. Sprague, and G. A. Neville Connell, “Technique For Monolithic Fabrication of Microlens Arrays,”Applied Optics, Vol. 27, No. 7, pp. 1281-1297, 1988.
【15】 M. Frank, M. Kufner, S. Kufner, M.Testorf﹐“Microlenses in Polymethyl Methacrylate With High Relative Aperture,”Applied Optics, Vol. 30, No. 19, pp. 2666-2667, 1991.
【16】 S. Lazare, J. Lopez, J. Turlet, M. Kufner, S. Kufner, P. Chavel, “Microlenses Fabricated by Ultraviolet Excimer Laser Irradiation of Poly (methyl methacrylate) Followed by Styrene Diffusion,”Applied Optics, Vol. 35, No. 22, pp. 4471-4475, 1996.
【17】 王述宜,黃俊欽,準分子雷射拖曳式加工六角形微透鏡陣列之模擬分析,科儀新知,第27卷第4期89至96頁,民國95年。
【18】 N.F. Borrelli, D.L. Morse, R.H. Bellman, W.L. Morgan, “Photolytic Technique For Producing Microlenses in Photosensitive Glass,”Applied Optics, Vol. 24, No. 16, pp. 2520-2525, 1985.
【19】 S. Zlolkowski, I. Frese, H. Kasprzak, S. Kufner, “Contactless Embossing of Microlenses-a Parameter Study,” Optical Engineering, Vol. 42, No. 5, pp. 1451-1455, 2003.
【20】 K. Naessens, H. Ottevaere, P.V. Daele, R. Baets, “Flexible Fabrication of Microlenses In Polymer Layers With Excimer Laser Ablation,” Applied Surface Science, Vol. 208-209, pp. 159-164, 2003.
【21】 楊啟榮,精密電鑄與應用技術,國立臺灣師範大學 機電科技學系。
【22】 陳敏華,精密電鑄,科學發展,第438期,第62至65頁, 2009。
【23】 友野理平,青谷薰,今井雄一,川合慧共著,賴耿楊譯著,實用電鍍技術全集,復漢出版社印行,1982。
【24】 韋乾佑,以微電鑄法製造高填充率之微透鏡陣列模仁研究,國立台灣科技大學機械工程研究所碩士論文,2003。
【25】 Allen J. Bard and Larry R. Faulkner, “Electrochemical methods fundamentals and Applications”, chapter 1, pp. 4, John Wiley (2001).
【26】 H. Yang, S.W. Kang, “Improvement of thickness uniformity in nickel electroforming for the LIGA process,” International Journal of Machine Tools & Manufacture , Vol.40, pp. 1065-1072, 2000.
【27】 張瑞斌,微電鍍技術及其在生物晶片之應用,國立成功大學工程科學系碩士論文,2001。
【28】 P. W. Atkins, Physical Chemistry (fourth ed.), Freeman, New York, 1990.
【29】 J. Brockris, D. M. Drazie, Electro-Chemical Science, Taylor and Francis Ltd, London, 1972.
【30】 楊啟榮,強玲英,黃奇聲,微系統LIGA 製程之精密電鑄技術,科儀新知,第21卷,第6期,第15至20頁,2000。
【31】 P. R. Choudhury, “Handbook of microlithography, micromachining, and microfabrication,” Vol. 2, Bellingham Washington, SPIE Press, 1997.
【32】 陳建仁,精密電鑄製程之應用介紹,鑄造科技,第154卷,第4至7頁,2002。
【33】 L.S. Johansen , M. Ginnerup, J.T. Ravnkilde, P.T. Tang, B. Lochel, “Electroforming of 3D microstructures on highly structured surfaces,” sensors and actuators A , Vol. 83, pp. 156-160, 2000.
【34】 昇鋐理化有限公司,鎳電鑄槽操作手冊,台灣。
【35】 余志成,徐珮凱,應用田口方法於具微小特徵矽基板之鎳基電鑄製程的最佳化,2008年模具技術與論文發表論文集會,pp.43-49, 中華民國97年8月,台北世貿展覽中心。
【36】 莊達仁,VLSI製造技術,高立出版社,2000。
校內:2023-12-31公開