簡易檢索 / 詳目顯示

研究生: 連政偉
Lien, Cheng-Wei
論文名稱: 製備含量子點修飾之DNA分子梳並應用其發展具分子探測與檢測功能之一維FRET生物感測器
Molecular Comb of Quantum-Dot-Conjugated DNA and Its Use for Developing One-Dimensional FRET Bionanosensor for Molecular Probing and Detection
指導教授: 魏憲鴻
Wei, Hsien-Hung
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 107
中文關鍵詞: DNA分子梳螢光共振能量轉移一維生物奈米感測器
外文關鍵詞: molecular combing, fluorescence resonance energy transfer(FRET), one-dimensional bionanosensor
相關次數: 點閱:103下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,我們製備了以螢光量子點(QD)修飾的DNA分子梳並將其應用在具備分子感應及偵測的一維奈米陣列上。於陣列上,我們使用具有目標針對性的量子點以及螢光共振能量轉移(FRET)的技術,在捕捉及檢測到目標分子時,以FRET來說明捕捉的完成及檢測的結果。我們由實驗上證實利用這樣DNA分子梳的設計不僅能夠藉捕捉更多的目標分子來提高FRET的訊號,而且還能藉獨特的雙重激發機制來進一步提高FRET效率。

    關鍵字:DNA分子梳、螢光共振能量轉移、一維生物奈米感測器。

    In this thesis, we prepare molecular comb of DNA having functionalized luminescent quantum dots (QDs) along its backbone and turn this setup into a one-dimensional nanoarray for molecular sensing and detection. The detection is realized by fluorescence resonance energy transfer (FRET) in which target-specific QDs are used to capture desired ssDNA molecules followed by a transmission of the fluorescence energy in between to signal the binding. We demonstrate that this DNA-comb biosensor is not only capable of amplifying FRET signals by capturing more targeted molecules, but also able to raise the FRET efficiency due to the unique double excitation mechanism resulting from the one-dimension geometry.

    摘要 I Abstract II 誌謝 III 目錄 IV 表目錄 VIII 圖目錄 IX 符號說明 XVIII 第一章 緒論 1 1.1 研究背景 1 1.2 DNA的分子結構 3 1.3 研究動機 4 1.4 文獻回顧 5 第二章 FRET基本原理 15 2.1 螢光共振能量轉移(Förster or Fluorescence Resonance Energy Transfer, FRET) 15 2.2 FRET的應用 17 第三章 應用主動退水法形成DNA分子梳以實現一維FRET奈米感測器 19 3.1 實驗 20 3.1.1 實驗構想 20 3.1.2 實驗裝置設計及組裝 20 3.1.3 工作溶液及藥品 21 3.1.4 實驗步驟 25 3.1.5 實驗相關細節 26 3.1.6 影像處理軟體拍攝條件及參數設定 28 3.1.6.A 影像處理軟體(Image-Pro Plus)的影像擷取參數條件設定 29 3.1.6.B 高倍率油鏡使用方法 30 3.2 FRET之螢光濾片選擇及螢光訊號偵測 31 3.3 實驗現象觀察與實驗數據記錄及討論 33 3.3.1 實驗現象觀察 33 3.3.2 使用供體QD655及受體Alexa647的FRET結果 34 3.3.3 將供體改為QD605的FRET結果 35 3.4 結論 36 第四章 應用DNA分子梳製備具辨識功能的一維FRET生物奈米感測器 45 4.1 實驗 46 4.1.1 實驗構想 46 4.1.2 實驗裝置設計及組裝 46 4.1.3 工作溶液及藥品 47 4.1.4 設計具分子辨識功能的FRET感測器 49 4.1.5 利用分子梳捕捉特定目標分子的FRET測試 50 4.1.6 實驗步驟 50 4.1.7 實驗相關細節 51 4.2 實驗觀測與記錄 52 4.3 實驗結果與討論 53 4.3.1 FRET強度與濃度的關係 54 4.3.2 FRET強度與效率的關係 55 4.3.3 雙重激發之機理推測 57 4.4 結論 59 第五章 運用交錯一維DNA分子梳形成二維DNA分子網去實現分子對接 72 5.1 實驗 73 5.1.1 實驗構想 73 5.1.2 實驗裝置設計及組裝 73 5.1.3 實驗步驟 75 5.1.4 實驗相關細節 77 5.2 實驗結果記錄與討論 78 5.2.1 主動退水於十字型流道 78 5.2.2 浸漬塗佈(Dip coating)於已切割之蓋玻片上 79 5.3 結論 80 第六章 結論與未來展望 86 6.1 結論 86 6.2 未來工作及研究方向 88 參考文獻 93 附錄一 微流道製程 96 自述 107

    A. Bensimon, A. Simon, A. Chiffaudel, V. Croquette, F. Heslot, D. Bensimon, Alignment and Sensitive Detection of DNA by a Moving Interface, Science, 1994, 265, pp. 2096-2098.
    B. A. Pollok, R. Heim, Using GFP in FRET-Based Applications, Trends in Cell Biology, 1999, 9, pp. 57-60.
    C. Lin, Y. Ke, Y. Liu, M. Mertig, J. Gu, H. Yan, Functional DNA Nanotube Arrays: Bottom-Up Meets Top-Down, Angewandte Chemie International Edition, 2007, 46, pp. 6089-6092.
    C. Y. Zhang, H. C. Yeh, M. T. Kuroki, T. H. Wang, Single-Quantum-Dot-Based DNA Nanosensor, Nature Materials, 2005, 4, pp. 826-831.
    C. Y. Zhang, J. Hu, Single Quantum Dot-Based Nanosensor for Multiple DNA Detection, Analytical Chemistry, 2010, 82, pp. 1921-1927.
    J. F. Allemand, D. Bensimon, L. Jullien, A. Bensimon, V. Croquette, pH-Dependent Specific Binding and Combing of DNA, Biophysical Journal, 1997, 73, pp. 2064-2070.
    J. H. Kim, V. R. Dukkipati, S. W. Pang, R. G. Larson, Stretching and Immobilization of DNA for Studies of Protein–DNA Interactions at the Single-Molecule Level, Nanoscale Research Letters, 2007, 2, pp.185-201.
    J. R. Lakowicz, Principles of Fluorescence Spectroscopy, Kluwer Academic Publishers/Plenum Press, 1999.
    K. Okumoto, A. Bogaki, K. Tateishi, T. Tsukamoto, T. Osumi, N. Shimozawa, Y. Suzuki, T. Orii, and Y. Fujiki, PEX12, the Pathogenic Gene of Group III Zellweger Syndrome: cDNA Cloning by Functional Complementation on a CHO Cell Mutant, Patient Analysis, and Characterization of Pex12p, Molecular and Cellular Biology, 18, pp. 4324-4336.
    K. Truong, M. Ikura, The Use of FRET Imaging Microscopy to Detect Protein–Protein Interactions and Protein Conformational Changes in Vivo, Current Opinion in Structural Biology, 2001, 11, pp. 573-578.
    L. Stryer, Fluorescence Energy Transfer as a Spectroscopic Ruler, Annual Review of Biochemistry, 1978, 47, pp. 819-846.
    M. Elangovana, H. Wallrabeb, Y. Chena, R. N. Dayc, M. Barrosob, A. Periasamy, Characterization of One- and Two-Photon Excitation Fluorescence Resonance Energy Transfer Microscopy, Methods, 2003, 29, pp. 58-73
    N. Boute, R. Jockers, T. Issad, The Use of Resonance Energy Transfer in High-Throughput Screening: BRET Versus FRET, Trends in Pharmacological Sciences, 2002, 23, pp. 351-354.
    X. Michalet, R. Ekong, F. Fougerousse, S. Rousseaux, C. Schurra, N. Hornigold, Dynamic Molecular Combing: Stretching the Whole Human Genome for High-Resolution Studies, Science, 1997, 277, pp. 1518-1523.
    T. H. Förster, Transfer Mechanisms of Electronic Excitation, Radiation Research Supplement, 1959, 27, pp. 7-17
    王政源,以移動界面法實現分子梳並應用其發展具標的分子診斷功能之一維奈米感測器,碩士論文,國立成功大學,2010。

    下載圖示 校內:2021-01-01公開
    校外:2021-01-01公開
    QR CODE